

Energy Pathways under Deep Uncertainty: What do Decision Makers Really Think is Important?

Francis Li, Steve Pye

wholeSEM – ETI workshop, 20th March 2017

wholeSEM-ETI workshop, March 2017

Study context

• The last decade has seen a strong and persistent growth in the use of models and institutional capacity for model-based science and policy analysis in the UK (Taylor et al. 2014, Strachan et al. 2016)

• UKERC have identified greater use of analytical tools that explore UK energy policy uncertainties and their potential impacts as a key strategic priority (Watson et al. 2015)

Study context

- ETI, BEIS, CCC, The Scottish Government etc. have all been advancing development of energy models to explore energy transitions to a low carbon system
- The window for critical decisions is closing and uncertainties are not necessarily reducing through time as better information becomes available
- For example, if you want to hedge against several critical uncertainties we now know it's possible that the UK needs to hit "net zero" emissions by 2045, not 80% by 2050 (Pye et al. 2017)

"Wicked" problem framing

- UK needs to make urgent near term decisions but is faced by what Rittel and West Churchman (1967, 1973) called *"wicked problems"*
- *"Tame problems"* include mathematics, chess, puzzle solving, cost benefit analysis: straightforward planning response, because there is a "right" answer
- With "Wicked Problems" there is no obviously "right" answer, and the appropriate response is unclear

Deep uncertainty

- Scholars define "deep uncertainty" (Lempert et al. 2003, Hallegatte et al. 2012) as problems where decision makers either don't know or cannot agree on:
 - The appropriate models to describe the interactions among a system's variables,
 - The probability distributions to represent uncertainty about key variables and parameters in the models, and/or
 - How to value the desirability of alternative outcomes

Stakeholder involvement in decisions

- Stakeholders need to be consulted for effective decision support under uncertainty (e.g. Funtowicz and Ravetz 1993), because:
 - Expertise is resident in the community regarding the key questions and issues
 - Different stakeholders bring with them different perspectives and priorities
 - Engagement is key for stakeholders to buy-in to the analysis
- The credibility, salience and legitimacy (Cash et al., 2002, 2003) of scientific evidence depends on the decision maker community trusting the analyst community

Challenges with current problem framing

- But often in energy policy and energy research this engagement is limited to analysts talking to each other e.g. analystproviders talking to analyst-users
- Analytical frameworks used (typically techno-economic models) often have the effect of narrowing the scope of what is discussed to what is tractable (Wynne, 1992)
- This potentially leaves other key uncertainties unresolved or ignored
- The map is not the territory (Robinson, 1992; Korzybski, 1958)

Research objectives and approach

- In recognising the challenge posed by deep uncertainty, interviews with strategy experts sought to broaden engagement, and to determine perspectives on uncertainty and decision support
- Key questions:
 - What do you perceive as being the critical uncertainties relating to the UK's future transition to a low carbon economy?
 - How do you think that these critical uncertainties can be mitigated?
 - What improvements can be made in the area of decision support for strategic planning and policy design?
- Open-ended (to avoid bias), semi-structured discussion format, around 60 minutes each (carried out between September 2016 – January 2017)
- 30+ hours of discussion, covering a wide range of topics and themes, challenging to code and distil key messages

Interviews

• 31 interviewees from a range of (self-reported) professional and disciplinary backgrounds

Interview group	Interview group description
Civil service (CS)	Officials involved the development of energy and climate change strategy
Other government (OG)	Officials from UK Government agencies, and senior advisors, either scientific or political, on climate and energy issues
NGO research (NGO)	Senior advisers and knowledge brokers involved in climate change and energy campaigning and research
Industry (IND)	Senior staff from advisory consultancies and industry focused on energy issues
Academia (ACA)	Senior academics (professors) engaged in climate and energy research

Critical Uncertainties: Overview

- Uncertainties around political & societal factors discussed almost as frequently as technological ones
- Recognition that each domain is contingent on and linked to each of the other domains
- Different emphasis on issues within domains by different groups

Technology	Commercial availability (T1)										
	Power generation (T2)										
	Power system configuration (T3)										
	Decarbonisation of heat (T4)										
	Bioenergy (T5)										
	Renewables (T6)										
	Smart solutions (T7)										
	Transport (T8)				_						
Society	Societal attitudes (S1)										
	New technology adoption (S2)										
	Equitable transitions (S3)										
	Demographic change (S4)										
Politics	Political will (P1)										
	Political cycles (P2)										
	Commitment (P3)										
	Vested interests (P4)										
	Innovation (P5)										
	Social mandate (P6)										
	Role of Government (P7)										
Economics	Economic growth (E1)										
Global	Global ambition (G1)										
Dimensions	Geopolitics & security (G2)										
	Oil markets (G3)					-					
		0%	5%	10%	15%	20%	25%	30%	35%	40%	45
		0,0			20,0			00.0	00.0		

Percentage of Interviewees who Discussed Theme

Critical Uncertainties: Most Discussed Themes

• Technological

- Will low carbon technologies become *commercially available* over timescales that matter? Global development ('wait and see') vs. domestic action (CS) e.g. solar
- Will critical *large-scale generation plant* (CCS, nuclear) ever be built to scale?
- What will the *power system configuration* of the future be like (community-led, distributed, prosumers?) And impact of ICT?
- How will *heat decarbonisation* be resolved? Tension between giving consumers choice versus large scale intervention
- Less discussed: RE integration, transport, bioenergy

Critical Uncertainties: Most Discussed Themes

• Societal

- How will societal attitudes evolve, in regard to ownership of the energy and climate challenge, and acceptance of increasing costs?
- Will the role of government be to influence societal attitudes, and to what extent can they affect this e.g. national dialogue?
- Will transitions be *equitable*, and help to engender buy-in? (ACA/NGO)
- Will consumers adopt new technologies and what will be their motivations to purchase them? (CS/OG)

Critical Uncertainties: Most Discussed Themes

• Political -

 Will necessary *political will* be maintained to seriously drive the transition forward (ACA/NGO)?

Impacted by -

- ST political cycle (salience, strategic decisions)?
- Vested interests? (lobbying, incumbents)
- Weak social mandate?
- Stated *political commitment* to long-term decarbonisation targets not viewed as critical uncertainty

Mitigation of Uncertainty: Overview

- Interview participant discussions generally focused on two main themes for mitigating the critical social, political and technological uncertainties:
 - Demonstrating a credible political commitment to the transition
 - Social engagement in the transition

Percentage of Interviewees who Discussed Theme

Mitigation of Uncertainty: Most Discussed Themes

- Demonstrate credibility of political commitment
 - Credibility through action: Government has strong role in de-risking and facilitating growth of new sectors
 Recognised issues of political exposure to failure....but nec. part of process (NGO/IND)
 - *Certainty of policy direction and process,* with sufficient flexibility built in
 - Alignment with economic objectives, with improved strategic coordination

Source: BEIS (2017)

Mitigation of Uncertainty: Most Discussed Themes

- Engendering social engagement
 - Different emphasis by interviewees on the role of actors
 - On increased 'ownership' of the challenge: Government must lead due to scale and complexity (non-CS) vs. limits on government reach in market-based economy (CS)
 - On more *public engagement & participation:* Solutions attractive consumer proposition (CS) vs. stronger proactive position through persuasive narrative re. co-benefits, fairness (*equity*) in addressing regional inequalities (NGO)

Decision Support: Overview

- Interview participants concerned with four main areas:
 - Narrow uncertainty space needs opening up (small range of parameters)
 - o Models as a too dominant a part of analytical framework
 - Poor communication of uncertainty
 - o Limits to existing analytical tools

	Broadening the uncertainty space (O1)						
Space	Radical or disruptive futures (O2)						
	Use of multiple models (O3)						
	Identifying robust strategies (O4)						
Strategy Development	Models as support tools (M1)						
Communicating Uncertainty	Communicating insights (Co1)						
Analytical Limits to Existing	Cost-driven paradigm (A1)						
Practice	Techno-economic, supply-side focus (A2)						
	Abstact actor behaviour (A3)						
		0%	10%	20%	30%	40%	50%

Percentage of Interviewees who Discussed Theme

Decision Support: Most Discussed Themes

- Existing analytical tools [whilst recognising the important role they play]
 - Move away from sole focus on techno-economic, supply-side framing
 - Stronger understanding of actor behaviour and limits of costdriven paradigm
- Assessment of uncertainty
 - Broadening out, including radical & disruptive futures but challenge of political acceptability
 - Multiple models generating distinctive scenarios
 - Meeting the policy need to understand robustness (against multiple criteria)
- Role of models
 - Modelling as part of broader framework (model-informed, not necessarily model-led)
 - More space for strong narratives and "visions" for communicating
- Communication
 - Where uncertainty incorporated, stronger efforts to communicate complexity......but underlying tension here in policy process

Critical Reflection

- The open ended nature of the interviews provided challenging to digest
- Some themes could fit equally well in politics/society/technology, we have used our best judgement
- Capturing a broader range of disciplinary expertise (e.g. investors, financiers, manufacturers etc.) would have provided additional valuable perspectives
- Many noted a requirement to explore innovation and disruption, but few articulated visions of radically different futures to the status quo
- Responses may be framed by the issues of the day

Final thoughts on modelling and decision support

Transition to a low carbon society 'will prove to be a messy, conflictual, and highly disjointed process' (Meadowcroft, 2009)

- Explicit characterisation of the socio-political dimension sits outside of the decision analysis process but at the same time is viewed as critical
- Suggests a greater role for alternative framings e.g. socio-technical perspectives to compliment techno-economic assessments (Rosenbloom, 2017)
- Expertise and input from social & political domains required; improve representation of behaviour in models (Li et al., 2015), bridging qualitative narratives and quantitative modelling (Geels et al., 2016), and participatory modelling (Holtz et al., 2015)
- But how to feed into the policy process? There is an obvious tension between increasing the complexity of analysis, bringing together different disciplines, and broadening engagement – and the process of policy making

Next Steps

- A paper on the expert interviews has been submitted to the journal Energy Research and Social Science (ERSS)
- Next part of the research is to focus on modelling approaches that allow for an assessment of both quantitative and qualitative uncertainties in modelling energy futures e.g. NUSAP (Numeral-Unit-Spread-Assessment-Pedigree) (Van Der Sluijs et al. 2005)
- Move towards stronger stakeholder involvement in modelling process, and an explicit recognition of why assumptions made (value-ladenness, consensus, expert judgment etc.)

UCL

References

Cash, D., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N. and Jäger, J. (2002) Salience, Credibility, Legitimacy and Boundaries: Linking Research, Assessment and Decision Making. John F. Kennedy School of Government, Harvard University, Cambridge, MA, USA. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=372280.

Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jager, J. and Mitchell, R. B. (2003) 'Knowledge systems for sustainable development', Proceedings of the National Academy of Sciences, 100(14), pp. 8086–8091. doi: 10.1073/pnas.1231332100.

Churchman, C. W. (1967). Guest editorial: Wicked problems.

Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25(7), 739-755.

Geels, F. W., Berkhout, F., & van Vuuren, D. P. (2016). Bridging analytical approaches for low-carbon transitions. *Nature Climate Change*.

Hallegatte, S., Shah, A., Brown, C., Lempert, R., & Gill, S. (2012). Investment decision making under deep uncertainty--application to climate change. The World Bank.

Holtz, G., Alkemade, F., de Haan, F., Köhler, J., Trutnevyte, E., Luthe, T., ... & Ruutu, S. (2015). Prospects of modelling societal transitions: Position paper of an emerging community. *Environmental Innovation and Societal Transitions*, *17*, 41-58.

Korzybski, A. (1958). Science and sanity: An introduction to non-Aristotelian systems and general semantics. Institute of GS.

Lempert, R., Popper, S., & Bankes, S. (2003). Shaping the next one hundred years: New methods for quantitative, long-term policy analysis. RAND report MR-1626, The RAND Pardee Center, Santa Monica, CA.

Li, F. G., Trutnevyte, E., & Strachan, N. (2015). A review of socio-technical energy transition (STET) models. *Technological Forecasting and Social Change*, *100*, 290-305.

Meadowcroft, J. (2009). What about the politics? Sustainable development, transition management, and long term energy transitions. Policy sciences, 42(4), 323.

Pye, S., Li, F.G.N., Price, J., Fais, B., 2017. Achieving net-zero emissions through the reframing of UK national targets in the post-Paris Agreement era. Nature Energy 2, 17024

Rittel, H. W., & Webber, M. M. (1973). Dilemmas in a general theory of planning. *Policy sciences*, *4*(2), 155-169.

Robinson, J.B., 1992. Of maps and territories. Technological Forecasting and Social Change 42, 147–164

Rosenbloom, D. (2017). Pathways: An emerging concept for the theory and governance of low-carbon transitions. *Global Environmental Change*, 43, 37-50. Strachan, N., Fais, B., & Daly, H. (2016). Reinventing the energy modelling–policy interface. *Nature Energy*, 1, 16012.

Taylor, P. G., Upham, P., McDowall, W., & Christopherson, D. (2014). Energy model, boundary object and societal lens: 35 years of the MARKAL model in the UK. *Energy Research & Social Science*, *4*, 32-41.

Van Der Sluijs, J. P., Craye, M., Funtowicz, S., Kloprogge, P., Ravetz, J., & Risbey, J. (2005). Combining quantitative and qualitative measures of uncertainty in model-based environmental assessment: the NUSAP system. *Risk analysis*, *25*(2), 481-492.

Watson, J., Gross, R., Ketsopoulou, I., & Winskel, M. (2015). The impact of uncertainties on the UK's medium-term climate change targets. *Energy Policy*, *87*, 685-695.

Wynne, B. (1992). Uncertainty and environmental learning: reconceiving science and policy in the preventive paradigm. *Global environmental change*, 2(2), 111-127.

Thank you for listening.

Approaches for dealing with deep uncertainty

- Stirling (1999, 2007) has a different four quadrant taxonomy for incomplete knowledge, based on whether we have a complete understanding what might happen (*outcomes*) vs. a complete understanding of their likelihood of occurring (*probabilities*)
- Identifies regions where quantitative analysis of uncertainty may prove intractable
- Stirling (2010) argues that experts should avoid pressures to simplify uncertainty to a simple number

	Knowledge about PROBABILITIES	Knowledge abou OUTCOMES
	NOT problematic <	Problematic
NOT problematic	RISK	AMBIGUITY
↑	 Familiar systems Controlled conditions 	Contested framings, questions, assumptions, methods
	Engineering failure	Comparing incommensurables: apples and oranges
	Known epidemicsTransport safety	Disagreements between specialists, disciplines
	 Flood (under normal conditions) 	Issues of behaviour, I trust and compliance
		Interest, language, meaning
		Matters of ethics and equity
	UNCERTAINTYComplex, nonlinear, open systems	IGNORANCE I
	Human element in causal models	Unanticipated effects
	 Specific effects beyond boundaries 	Unexpected conditions
	 Flood under climate change 	Gaps, surprises, unknowns
	, i i i i i i i i i i i i i i i i i i i	Novel agents like TSEs
 Problematic	Unassessed carcinogensNew variant human pathogens	Novel mechanisms such as endocrine disruption

2007 Update