

PBL Netherlands Environmental Assessment Agency

Representation of heterogeneity and consumer behavior in the transport sector

O. Y. Edelenbosch, D. McCollum

Non cost barriers in consumer choice

- Adoption of new vehicle technologies rely on consumer purchases
- Energy efficiency research shows that consumers do not purchase energy-efficient technologies based solely on a cost-effectiveness criterion (Mundaca et al. 2010)
- And that choices are heterogeneous as considerations are different for consumers

 \rightarrow Non Cost Barriers for different types of consumers are captured in the MA³T disutility dataset

Key question

- Most Integrated Assessment Models (IAMs) represent investment decisions in technology as done by a homogeneous and 'unboundedly rational' end user
- How to represent in our models influences on vehicle choices beyond costs and prices.
 - Can we use a simple model to represent this complex issue? (given scope of IAMs, data quality)

Outline Research

 Implement non monetary factors (disutility costs) disaggregated over consumer 27 groups implemented in IMAGE

Does adding the consumer groups lead to more heterogeneity?

2. Parameterize the multinomial equation in IMAGE vehicle choice model

Can this heterogeneity be approximated or parameterized in a simpler, more stylized way?

IMAGE transport

- Transport activity is related to population, income, mode costs, speed
- Techno-economic parameter for each technology are exogenously assumed.
- Technologies compete with each other based cost per passenger km
- Technologies modelled are ICE, HEV, PHEV, Fuel Cell, EV

Focus Research:

Vehicle choice in passenger road transport (cars)

Vehicle choice model

Scenario results US - baseline

27 consumers

Scenario results US - mitigation

27 consumers

Parameterizing the MNL

1 group $\lambda = 100$

Parameterizing the MNL

1 group $\lambda = 50$

Parameterizing the MNL

Vehicle choice model in IMAGE

Resembles 27

groups better

than original

1 group

IMAGE Mitigation scenario

Conclusions and ways forward:

- Logit parameterization can reflect explicit representation of heterogeneity.
- \rightarrow Results improve when λ is technology specific
- Current disutility cost are static which is a barrier for vehicle transition
- → Endogenise disutility cost assumptions on refuelling stations, model availability
 - Subsidies for early adopters

Thanks for your attention. Questions?

MA³T Model disutility costs

Lin, 2009. Oakland Ridge National Laboratory

Late technology adopter

Early technology adopter

27 Consumer groups

IMAGE Mitigation scenario

IMAGE Mitigation scenario

IMAGE Mitigation scenario

IMAGE Mitigation scenario

1 group

Does not resembles 27 groups better than original

Comparison model results

	Mitigation No disutillity cost	Mitigation Disutillity cost
Electric car deployment	2020-2045	2040-2050
Phase out of fossil ICE	30 – 40 yr	60 – 80 yr
Max % ICE Bio deployment	0 - 8.5 %	57 – 81 %
Cumulative CO ₂ emissions (1990-2100)	14 - 15 GtC	17 - 21 GtC