

Global Sensitivity Analysis of an Energyeconomy Model of the Residential Building Sector

F. Branger, L.-G. **Giraudet**, C. Guivarch, P. Quirion (CIRED)

International BE4 Workshop – London – April 20, 2015

→Uncertainty associated with modelling such a complex system?

- 1. The Res-IRF model in a nutshell
- 2. Quantifying uncertainty: Monte-Carlo analysis
- 3. Characterizing uncertainty: the Morris Method

Res-IRF in a nutshell

Res-IRF: Scope

- Energy use covered
 - Space heating (2/3 of French household demand)
 - Electricity, natural gas, fuel oil
- Energy efficiency improvements
 - New constructions (standard/low energy/passive)
 - Retrofitting of existing dwellings (including fuel switch)

Res-IRF's Main Innovations

- All margins of energy use are endogenous
 - Intensity of retrofits
 - Number of retrofits
 - Utilization adjustments (Rebound effect)
- Some barriers to energy efficiency
 - Static: split incentives (discount rates)
 - Dynamic: learning-by-doing, information acceleration

Intensity of Retrofits

$$PR_{i,f} = \frac{LCC_{i,f}^{-\nu}}{\sum_{h>i} LCC_{i,h}^{-\nu}}$$

Heterogeneous discount rates across landlords and tenants

$LCC_{i,f} = CINV_{i,f} + CENER_f + IC_{i,f}$

Subject to endogenous decrease (learning-by-doing)

Subject to endogenous decrease (peer effects)

Number of Retrofits

Net present value (€/dwelling)

Captures heterogeneity in preferences for heating (e.g. sensitiveness to cold)

Utilization Adjustments

EDF Data Res- RF Function

Insights into French Policy

Quantifying Uncertainty: Monte-Carlo Analysis

Overall Uncertainty

Total Consumption (PE)

25% around the median value

Characterizing Uncertainty: the Morris Method

Methods of Sensitivity Analysis

The Morris Method: Design

Results: Morris Diagram

Measure of interaction

Parameters Ranking

Important Parameters: Comment

• Energy price

Somewhat reassuring that the model is sensitive to its main input...but very uncertain parameter in practice!

• Initial retrofitting rate

Illustrates that calibration is a critical step

• Rebound effect elasticity Importance of behaviours

The model is more sensitive to how the different margins of energy use are disaggregated than to how barriers to energy efficiency are introduced

Discussion

Overall, we were quite happy with the results. But...

- Even though all inputs are taken into account, analysis still dependent on the choice of the probability distributions
- Sensitivity specific to one particular output (energy use)
- Sensitivity analysis only captures uncertainty about model quantities, not about model forms

REFERENCES

- Branger et al. (2015) Global sensitivity analysis of an energy-economy model of the residential building sector, forthcoming, Envionmental Modeling & Software
- Giraudet et al. (2011). Comparing and combining energy saving policies.
 Will proposed residential sector policies meet french official targets?
 Energy Journal, 32 (SI 1):213–242
- Giraudet et al. (2012). Exploring the potential for energy conservation in french households through hybrid modeling. Energy Economics, 34 (2):426–445.
- **Morris, M. D.** (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2):161–174.
- Saltelli et al (2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons.
- Van Asselt, M. B. A. and Rotmans, J. (2002). Uncertainty in integrated assessment modelling. Climatic Change, 54(1):75–105.

Potential for energy conservation in French dwellings

Giraudet, L.-G., Guivarch, C., Quirion, P., 2012. Exploring the potential for energy conservation in French households through hybrid modeling. Energy Economics 34, 426–445. doi:10.1016/j.eneco.2011.07.010