



The transportation sector as a lever for reducing long-term mitigation costs in China

Meriem Hamdi-Cherif hcmeriem@centre-cired.fr

# International $BE_4$ Workshop



Senate House – London April 20–21 2015

# Context/Motivation

- **Chinese economic development** goes hand in hand with:
  - (i) A growth of the production

    Accompanied with an increase of the FREIGHT transport
  - (ii) An enriched population and fast-growing urbanization that induce increasing demand for passenger transport (notably an increase of the motorization rate)
- > The Transportation sector is crucial for China
  - High reliance on oil products
  - Increasing energy demand
  - Increasing CO2 emissions
  - → Particularly regarding Energy Security and Climate Change issues

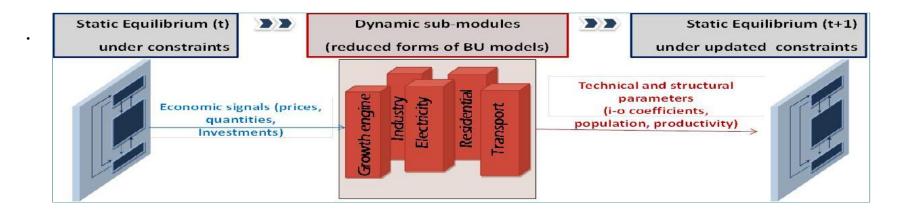
# Rationale/Objective

- ➤ In its attempts to have a **sustainable development** 
  - → The transportation sector is indeed particularly challenging for China
- > To avoid important "lock-ins" in carbon-intensive pathways ...
  - ... especially given
    - ✓ The high coal availability
    - ✓ The important life span of infrastructures
  - → China has to redouble its efforts ...

...with voluntary schemes

# Rationale/Objective

- ➤ In its attempts to have a **sustainable development** 
  - → The transportation sector is indeed particularly challenging for China
- > To avoid important "lock-ins" in carbon-intensive pathways ...
  - ... especially given
    - ✓ The high coal availability
    - ✓ The important life span of infrastructures
  - → China has to redouble its efforts ...


...with voluntary schemes

- The purpose of this paper is to investigate the role of passenger and freight transportation activities in the transition to a low carbon Chinese society
  - → It is an attempt to quantify the impact of urban voluntary policies on Chinese mitigation costs.
  - → A particular attention is given to specific measures designed to control the growth of mobility.

### The role of transport in low-carbon pathways Methodology and Modeling approach

- **IMACLIM-R** → Energy-Economy-Environment (E3) model
  - → allows an explicit representation of the interplay between:

Transportation, Energy and Growth patterns



- General equilibrium model: Hybrid, multi-region, multi-sector, Dynamic and Recursive
- Represents the "second best" nature of economic interactions, and the inertias on technical systems (that limits the flexibility of adjustments)
- Relies on hybrid matrices ensuring consistency between money flows and physical quantities (Mtoe, passenger.kilometers and ton.kilometrs)
- Embarks a detailed description of passenger and freight transportation

#### Transportation in the IMACLIM-R model

The standard representation of transport technologies ...

... is supplemented by an explicit representation of the "behavioral" determinants of mobility

#### **Utility Maximization:**

$$\begin{aligned} \boldsymbol{U}_{k}\left(\vec{C}_{k}, \vec{S}_{k}\right) &= \prod_{\substack{\text{goods } i \\ \text{services } j}} \left(C_{k,i} - bn_{k,i}\right)^{\varsigma_{k,i}} \left(S_{k,j} - bn_{k,j}\right)^{\varsigma_{k,j}} \\ S_{k,mobility} &= \left(\left(\frac{pkm_{k,air}}{b_{k,air}}\right)^{y_{k}} + \left(\frac{pkm_{k,public}}{b_{k,public}}\right)^{y_{k}} + \left(\frac{pkm_{k,cars}}{b_{k,cars}}\right)^{y_{k}} + \left(\frac{pkm_{k,nonmotorized}}{b_{k,nonmotorized}}\right)^{y_{k}} \right)^{-y_{k}} \end{aligned}$$

#### **Twofold contraint:**

A standard income budget constraint

$$ptc_{k} \cdot Income_{k} = \sum_{i} pArmC_{k,i} \cdot C_{k,i} + \sum_{\text{Energies } Ei} pArmC_{k,Ei} \cdot \left(S_{k}^{cars} \cdot \Gamma_{k,Ei}^{cars} + S_{k}^{m^{2}} \cdot \Gamma_{k,Ei}^{m^{2}}\right)$$

$$Tdisp_{k} = \sum_{\text{means of transport } T_{j}} \int_{0}^{pkm_{k,T_{j}}} t_{j}(u) du$$

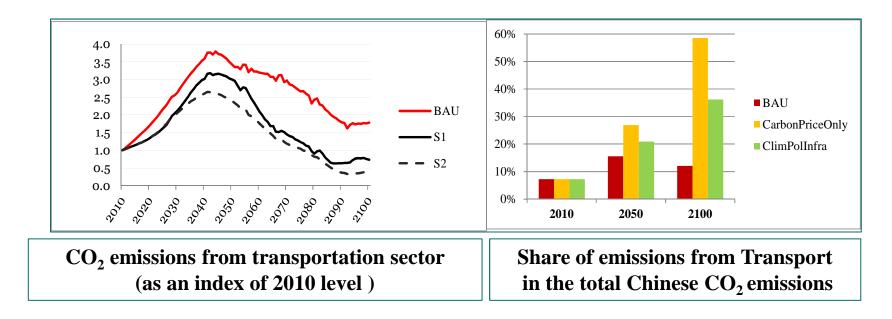
$$A travel time budget constraint$$

Capacity=function (infrastructures, equipment)

#### Transportation in the IMACLIM-R model

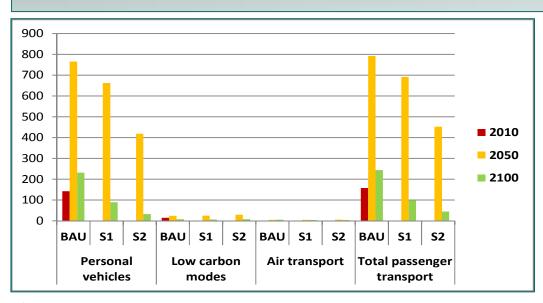
This representation...




The dialogue between the *top-down* structure and the *bottom-up* modules allows to represent:

- The rebound effect of energy efficiency improvements on mobility
- Endogenous mode choices in relation with infrastructure availability
- The impact of investments in infrastructure capacity on the amount of travel
- The constraints imposed on mobility needs by firms' and households' location (urban form)

# To assess the effects of mobility control measures on the Chinese economy Three worlds are considered

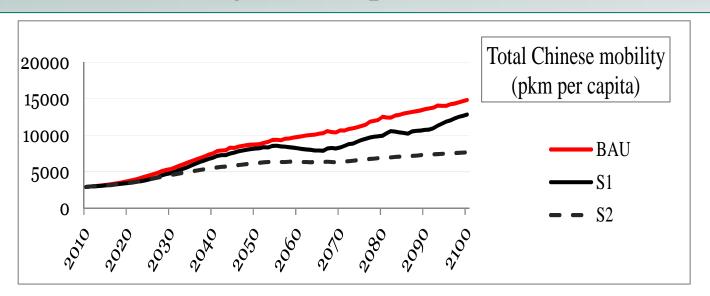

- ➤ Reference: Business-As-Usual (**BAU**)
- ➤ A stringent climate objective (3.4W/m² in 2100)/ Satisfied by a "carbon price only" policy (S1)
- Complementarily to carbon pricing ...
  - ... we consider urban organization policies that aim at controlling the 'behavioral' determinants of the mobility demand (S2):
  - (i) Urban reorganization lowering the constrained mobility (i.e. mobility for commuting and shopping)
  - (ii) Reallocation of infrastructure investments in favor of public transportation modes
  - (iii) Adjustments of the logistics organization to decrease the transport intensity of production/distribution processes.

# The transportation sector in the Chinese low carbon transitions



- Emissions decrease in the second half of the century ... population ...
- Despite this decrease ...
  - ... Emissions from transport represent a significant part of remaining emissions (60% in S1 et 37% in S2)
- ➤ Effects of the mobility control measures: Emissions in S2 are lower during the whole century.

#### Dynamics of passenger transport




Chinese CO2 emissions from passengers transport (MtCO2)

Low carbon modes (public transport + non-motorized)

- Whatever the scenario, whatever the transportation mode...
  Emissions increase significantly during the first half of the 21st century
- ➤ While they remain above their 2010 level in the BAU scenario ... they become significantly lower in the stabilization scenarios Particularly in S2! (-37% in S1 *vs.* -72% in S2)
- ➤ Mechanisms at play ?
  - The evolution of the total passenger mobility per capita
  - Modal structure evolution
  - Efficiency improvements and/or electrification of the vehicle fleet

#### Passenger Transport evolution



- ➤ The rapid increase of mobility in the baseline scenario ...
  - ... is only moderately affected by the mitigation policy when the carbon price is the sole used instrument (-7% in 2050 and -13% in 2100)
  - → Limitation in the increase of fuel costs
     (lower oil and coal demand induced by the climate policy)
  - → Strong inertia of urban organizations (long-lived organization) (The constrained mobility can't be changed overnight!)
- The mobility in S2 is significantly lower. (-29% in 2050 and -48% in 2100)
  - → measures favoring urban sprawl moderation

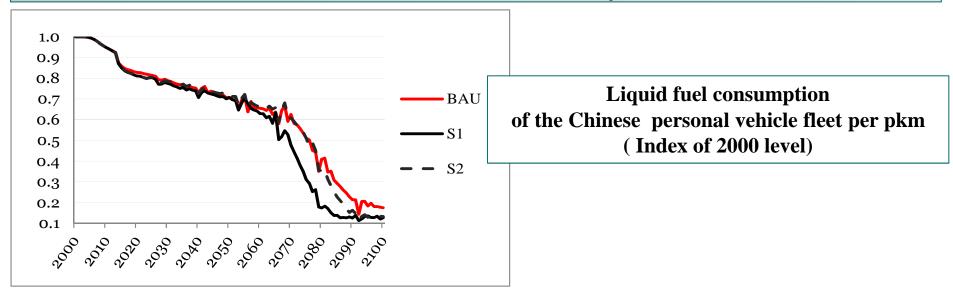
#### Passenger Transport Modal breakdown

|                  | 2010 | 2050 |           |      | 2100 |           |      |
|------------------|------|------|-----------|------|------|-----------|------|
|                  |      | BAU  | <b>S1</b> | S2   | BAU  | <b>S1</b> | S2   |
| Pesonal vehicles | 28%  | 78%  | 74%       | 60%  | 92%  | 88%       | 67%  |
| Low carbon modes | 72%  | 22%  | 25%       | 39%  | 7%   | 11%       | 31%  |
| Air transport    | 0.2% | 0.3% | 0.4%      | 0.6% | 0.6% | 0.7%      | 1.5% |

Modal distribution of the Chinese passenger mobility

#### > S1 and BAU are similar!

- → The lowering of international oil and coal prices, due to the carbon price
  Partially offset the increase of fuel costs
  Motorized modes more accessible
- → Investments in road infrastructures
   Decreases road congestion
   Favors the attractiveness of private cars at the expense of other transportation modes


### Passenger Transport Modal breakdown

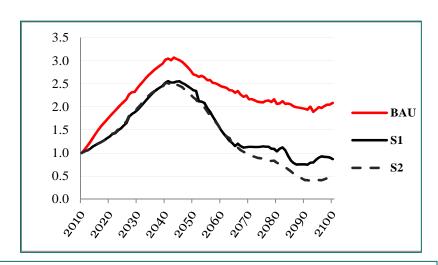
|                  | 2010 | 2050 |           |      | 2100 |           |      |
|------------------|------|------|-----------|------|------|-----------|------|
|                  |      | BAU  | <b>S1</b> | S2   | BAU  | <b>S1</b> | S2   |
| Pesonal vehicles | 28%  | 78%  | 74%       | 60%  | 92%  | 88%       | 67%  |
| Low carbon modes | 72%  | 22%  | 25%       | 39%  | 7%   | 11%       | 31%  |
| Air transport    | 0.2% | 0.3% | 0.4%      | 0.6% | 0.6% | 0.7%      | 1.5% |

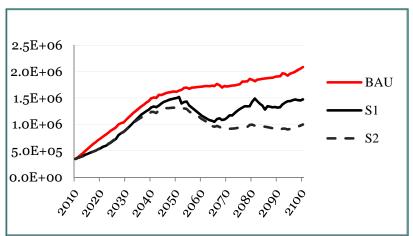
Modal distribution of the Chinese passenger mobility

- ➤ With specific measures triggering a redirection of investments in favor of low-carbon transportation infrastructures:
  - → Significant shift from personal vehicles to public and non-motorized modes

## Passenger Transport Vehicles' Efficiency




- → To capture
  - → The efficiency improvements of internal combustion engines (ICE)
  - → The electrification of the fleet through the diffusion of hybrid and electric vehicles
- In the S1 scenario, the carbon price allows for significant vehicles efficiency improvements/BAU
- Lesser effect in S2, due to
  - → Lower carbon prices
  - → Slower fleet turn-over, due to lower vehicle use!


# Passenger Transport Determinants of emissions reductions

- → Very different according to the implemented policies
- ➤ If the carbon price is the only instrument ...

  the major effect comes from the diffusion of energy efficiency in vehicles
- When complementary policies are implemented ... modal shifts towards low-carbon modes coupled with mobility reduction measures play a dominant role

#### Freight Transport

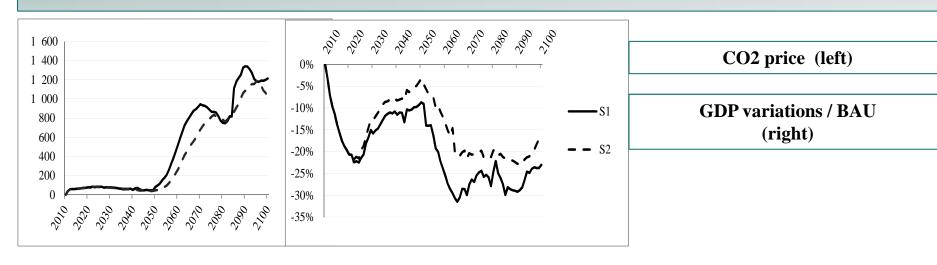




**Chinese CO2 emissions from freight transportation** 

Chinese freight transportation activity (tkm)

> Similar results ... but lack of time ...!


#### Mitigation efforts in the Chinese economy

|             |           | 2010-2050 | 2050-2100 |  |
|-------------|-----------|-----------|-----------|--|
| Transports  | <b>S1</b> | 2.2%      | -2.8%     |  |
|             | <b>S2</b> | 1.8%      | -3.4%     |  |
| Electricity | <b>S1</b> | -2.7%     | -3.0%     |  |
| Liectricity | <b>S2</b> | -2.3%     | -2.3%     |  |
| Industry    | <b>S1</b> | -0.3%     | -6.5%     |  |
| illuustiy   | <b>S2</b> | -0.1%     | -6.2%     |  |

**Mean annual emissions variations By period – Three main emitting sectors** 

- ➤ Without specific measures aimed at reducing mobility, decarbonization efforts are mainly based on electricity and industry
- ➤ The "transportation policies"
  - ✓ increase the contribution of the transportation sector to mitigation efforts
  - ✓ allow the other main emitting sectors to slow their decarbonization efforts

#### Macroeconomic effects



- ➤ Very weak sensitivity of the transportation sector to price signals
  - → Need for very high CO<sub>2</sub> prices during the second half of the century to reach the climate target
  - $\rightarrow$  Significant macroeconomic costs if the CO<sub>2</sub> price is the only instrument
  - → The implementation of mobility growth control measures offers mitigation potentials independent of carbon prices
  - → These measures allow for important reductions in the level of carbon prices (on average 25% lower over 2050-2100)
  - → Significant reductions of the macroeconomic mitigation costs (costs are reduced by 5 points in 2050 and by 10 points in 2100)

#### Conclusion

- This study allows to highlight the role of transportation in the mitigation process
- Given a climate objective, ...
  - ... the implementation of measures fostering a modal shift towards low-carbon modes + a decoupling of mobility needs from economic activity prove to:
  - → Modify the sectoral distribution of mitigation efforts
  - → Contribute to avoid the risk of 'lock-ins' in carbon-intensive pathways
  - → Significantly reduce the mitigation macro-economic costs relatively to a "carbon price only" policy
- → Early and voluntary infrastructure policies have a key role to play...
  - ... as a **hedge against the risk of very high costs** of the climate stabilization that China seems to undertake ...





#### Thank you for your attention!!

#### **Meriem Hamdi-Cherif**

hcmeriem@centre-cired.fr

http://www.imaclim.centre-cired.fr/

#### International BE4 Workshop



Senate House – London April 20–21 2015

## Transport de passagers Répartition modale

|                  | 2010 | 2050 |           |           | 2100 |           |           |
|------------------|------|------|-----------|-----------|------|-----------|-----------|
|                  |      | BAU  | <b>S1</b> | <b>S2</b> | BAU  | <b>S1</b> | <b>S2</b> |
| Pesonal vehicles | 28%  | 78%  | 74%       | 60%       | 92%  | 88%       | 67%       |
| Low carbon modes | 72%  | 22%  | 25%       | 39%       | 7%   | 11%       | 31%       |
| Air transport    | 0.2% | 0.3% | 0.4%      | 0.6%      | 0.6% | 0.7%      | 1.5%      |

Modal distribution of the Chinese passenger mobility

Although very small (1.5% in 2100), the share of the air transport is significantly higher in S2:

mobility needs are decreased due the urban reorganization, and can be satisfied by low-carbon modes, which releases time and budget to ... travel by plane.

#### Salient features of the IMACLIM-R framework (1)

Improving the realism of the description of consumption patterns

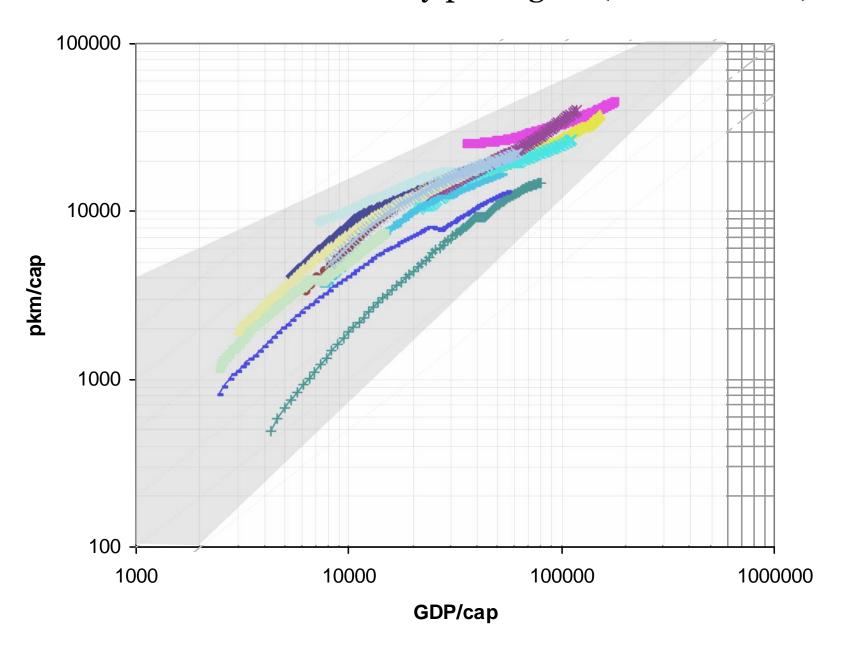
- Energy consumption does not provide satisfaction by itself but through the **services** (light, heating, devices) it delivers.
- Transport consumption shows specific patterns: **Zahavi's law** (constant time-budget), rebound effect, congestion, modal choice.
- Energy consumption and transportation are driven and constrained by the **ownership of durables**, cars and square meters of housing (themselves driven by their prices)

#### Static equilibrium under short-run constraints: demand

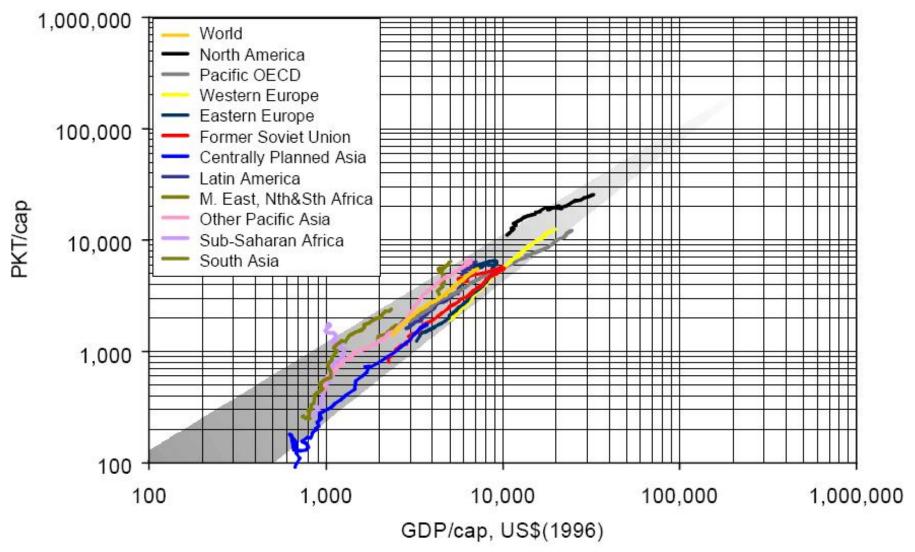
#### Utility maximization:

$$\boldsymbol{U_{k}}\left(\vec{C}_{k}, \vec{S}_{k}\right) = \prod_{\substack{\text{goods } i \\ \text{services } j}} \left(\mathbf{C}_{k,i} - b n_{k,i}\right)^{\varsigma_{k,i}} \left(S_{k,j} - b n_{k,j}\right)^{\varsigma_{k,j}}$$

$$S_{k,mobility} = \left( \left( \frac{pkm_{k,air}}{b_{k,air}} \right)^{y_k} + \left( \frac{pkm_{k,public}}{b_{k,public}} \right)^{y_k} + \left( \frac{pkm_{k,cars}}{b_{k,cars}} \right)^{y_k} + \left( \frac{pkm_{k,nonmotorized}}{b_{k,nonmotorized}} \right)^{y_k} \right)^{-y_k}$$

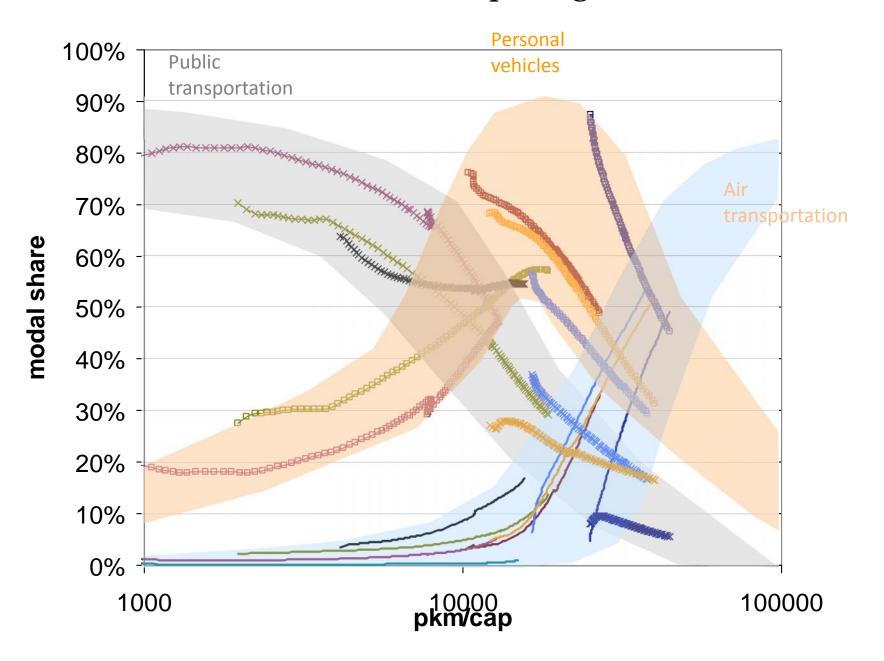

#### Under two constraints:

$$ptc_{k} \cdot Income_{k} = \sum_{i} pArmC_{k,i} \cdot C_{k,i} + \sum_{\text{Energies } Ei} pArmC_{k,Ei} \cdot \left(S_{k}^{cars} \cdot \Gamma_{k,Ei}^{cars} + S_{k}^{m^{2}} \cdot \Gamma_{k,Ei}^{m^{2}}\right)$$

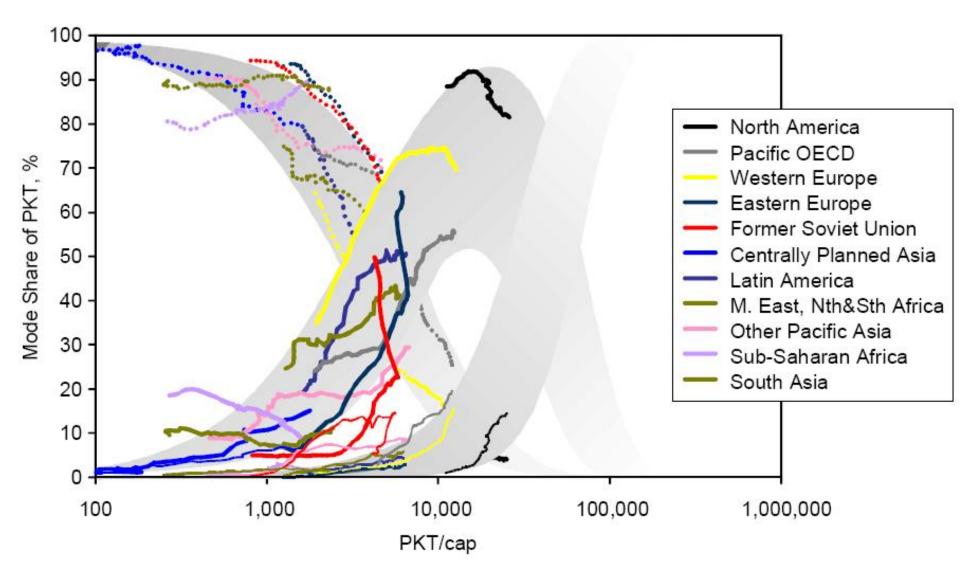

$$Tdisp_{k} = \sum_{\text{means of transport } T_{j}} \int_{0}^{pkm_{k,T_{j}}} t_{j}(u) du$$

# Illustrative results at the global level

#### Evolution of mobility per region (model results)




#### Evolution of mobility per region (historical data)




Source: Schäfer, 2007. Long-term trends in global passenger mobility.

#### Evolution of modal shares per region (model results)



#### Evolution of modal shares per region (historical data)



Source: Schäfer, 2007. Long-term trends in global passenger mobility.