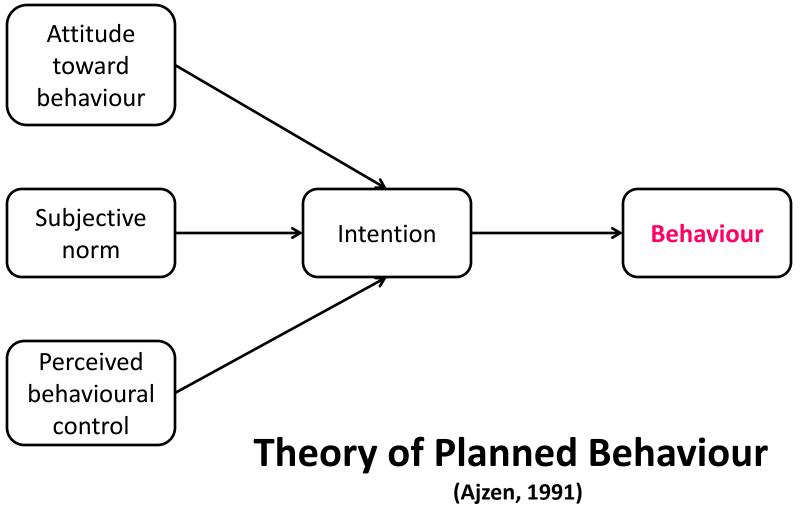


Challenges and opportunities of modelling behaviour in E4 models

By the 'People, Energy, Buildings' Group: Gesche Huebner, Mike Fell, Moira Nicolson, Megan McMichael, Stephanie Gauthier, David Shipworth

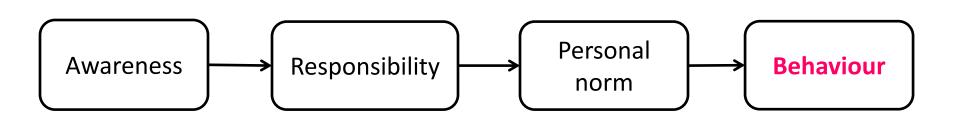
Four main challenges

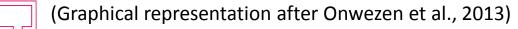
- 1. Limited understanding of 'behaviour'
- 2. Lack of 'theories' with substantial explanatory power of behaviour
- 3. Lack of high quality data relevant to behaviour
- 4. Huge complexity of the physical processes through which behaviour is translated into changes in energy demand



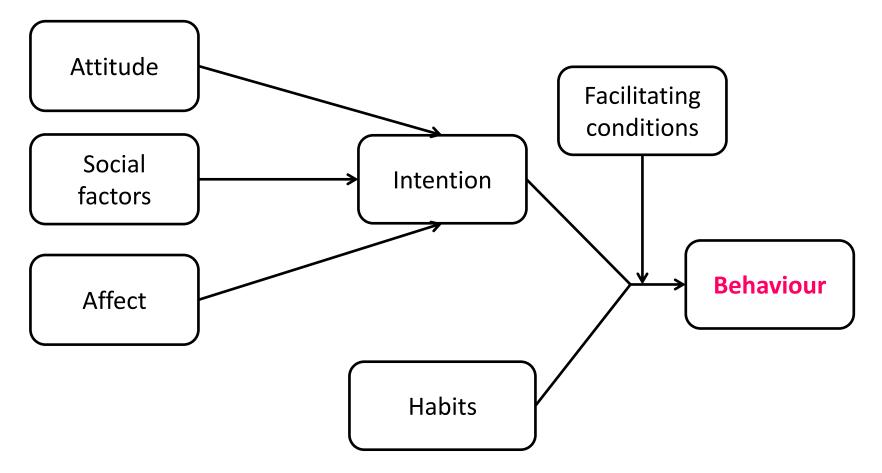
1. What is behaviour? - Definitions

- The way in which an animal or person behaves in response to a particular situation or stimulus (Oxford Online Dictionary)
- Environmentally significant behaviour: the extent to which it changes the availability of material or energy from the environment or alters the structure and dynamics of ecosystems or the biosphere itself (Stern, 2000)
- Two types of behaviour: curtailment versus one-off behaviour (Stern & Gardner, 1981)
- Everything that isn't buildings (Seligman et al., 1978)


1. What is behaviour? - Models



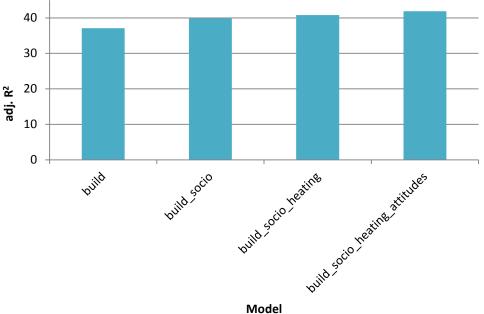
1. What is behaviour? - Models



Norm Activation Model (Schwartz, 1977)

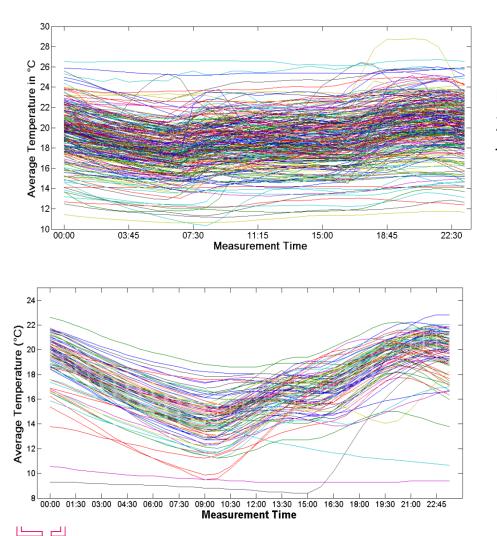
1. What is behaviour? - Models

Theory of Interpersonal Behaviour (Triandis 1977)


2. Lack of explanatory power

- TPB explains 25 35% of the variability in behaviour (e.g. Ajzen, 1991)
- VBN theory explains 19% to 35% of the variability in behaviour (Stern et al., 1999)
- Example of (self-reported) travelling choice (Bamberg & Schmidt, 2003)
 - TPB: Intention and the control beliefs explain 45% variance of car use
 - TIP: car use habit and intention explain 51% variance of car use
 - Norm-activation model: personal norm explains 14% of variance in car use

2. Lack of explanatory power-energy consumption

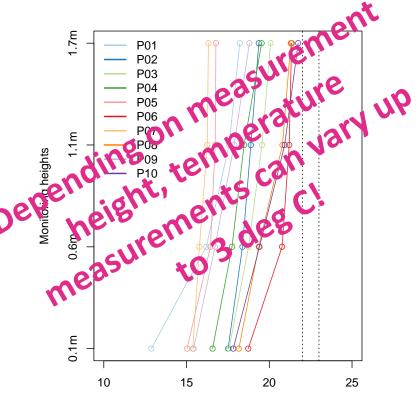

In total, we can only explain 42% of variability in domestic energy consumption. (Huebner et al., 2015)

- Behaviour plays tiny role
 - Also: neither variables of 'Theory of Planned Behaviour' nor of the norm-activation model explain energy consumption(Abrahamse & Steg, 2009)
 - But: one-off behaviours modelled as building variables!

3. Data issues – Variability

Huge variability between homes (N = 275 homes, average winter temperature).

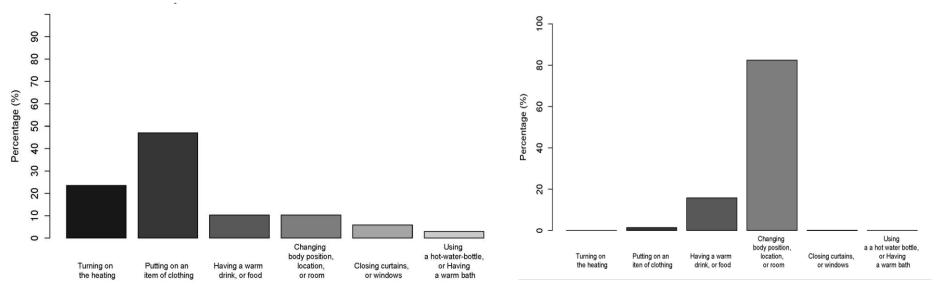
Is the mean sufficient in representing the data? e.g. maximum more important?


Huge variability within a home (N = 92 winter days).

(Huebner et al., 2013)

3. Data issues – Measurement

- Internal temperature proxy for demand temperature & calculation of rebound effect
- But: not uniformly distributed in space
 - Impact of measurement height and location


Living Room - Temperature [oC]

(Gauthier & Shipworth, 2014)

3. Data issue – Data sources/ methods

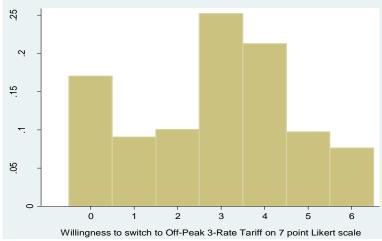
- Different data sources / methods can give different results.
 - e.g. self-report versus observed data on thermal discomfort

(Gauthier & Shipworth, 2015)

3. Data issues – Data sources / methods

Different data sources / methods can give different results.

– e.g.


- <u>Focus groups</u> showed people thought they would lose personal control under 'direct load control' (i.e. remote control by third parties for purposes of demand-side response) (Fell et al., 2014)
- <u>Representative survey</u> showed people thought they would have more control with a direct load control tariff than under time of use pricing (Fell et al., under review)

3. Data issues – Non-availability

- For many new technologies, we can only assess stated preferences ("I would sign up to a Time of Use Tariff") but not revealed preferences ('number of people signing up to Time of Use Tariff')
 - Product / infrastructure just not available
- Problem: How well do stated preferences translate in actual demand?

3. How do stated preferences transfer into actual demand – Green Deal

- "Central assumption" behind the Green Deal (UK Government's flagship energy efficiency programme) was public take-up rates
- Public take up rates were calculated using results from choice modelling of main energy efficiency measures (DECC, 2012)

	Modelled uptake to March 2015	Actual uptake to February 2015
Solid wall insulation	147,000	1,704
Cavity wall insulation	830,000	320
Loft insulation	364,000	938
 Glazing and draught proofing 	~100,000	254

4. How does behaviour relate to energy demand?

- Complex physical processes translate behaviour into changes in energy demand
- The same behaviour in different contexts could have very different energy implications
 - Even if we knew the temperature set-point of an occupant, we wouldn't know the implications for energy use, <u>unless</u> we knew about building & technology factors, climate, and other behaviours such as window opening

Cannot model behaviour in isolation

What can social science do?

- Grow understanding of behaviour through more & better data
 - E.g. reduce measurement errors, representative samples, experimental research to make causal statements (RCTs)
 - E.g. LUKES project as part of CEE (Cooper et al., 2014)
- Communicate & advice on best practice
 - Show the limits of our understanding of behaviour
 - Identify most appropriate data sources for given purposes
 - Quantify error margins and variability
 - Give a 'realistic' estimate about behaviour change potential and associated costs
- Grow as a discipline
 - Understand the relationship between hypothetical and actual behaviour
 - Bridge technology, buildings, people
 - Increase conceptual clarity
 - Be less tribal 🙂

References

- Abrahamse, W. & Steg, L. (2009). How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings? *Journal of Economic Psychology*, *30*, 711–720.
- Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211
- Bamberg, S., & Schmidt, S. (2003). Incentives, morality or habit? Predicting students' car use for university routes with the models of Ajzen, Schwartz and Triandis. *Environment and Behavior, 35*, 264–285
- Cooper, A., Shipworth, D., Humphrey, A., Elam, S., Hamilton, I., Huebner, G. et al. (2014). UK Energy Lab: A feasibility study for a longitudinal, nationally representative sociotechnical survey of energy use. Synthesis Report. <u>URL:https://www.bartlett.ucl.ac.uk/energy/research/themes/people-energy/lukes</u>.
- DECC. (2012). Final Stage Impact Assessment for the Green Deal and Energy Company Obligation. June 2012. Retrieved from
 <u>https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/42984/5533-final-stage-impact-assessment-for-the-green-deal-a.pdf</u>
- DECC. (2015). Green Deal and Energy Company Obligation. Monthly Statistics: March 2015. Retrieved from: <u>https://www.gov.uk/government/statistics/green-deal-and-energy-company-obligation-eco-monthly-statistics-march-2015</u>
- Fell, M. J., Shipworth, D., Huebner, G. M., & Elwell, C. A. (2014). Exploring perceived control in domestic electricity demand-side response. *Technology Analysis & Strategic Management*, 26(10), 1118-1130.
- Fell, M. J., Shipworth, D., Huebner, G. M., & Elwell, C. A. (under review). Public acceptability of domestic demand-side response: the role of automation and direct load control.
- Gauthier, S. & Shipworth, D. (2014). Variability of thermal stratification in naturally ventilated residential buildings. *Conference proceedings:* 2014 Building Simulation and Optimization Conference 2014. London, UK.
- Gauthier, S. & Shipworth, D. (2015). Behavioural responses to cold thermal discomfort. *Building Research and Information, 43*(3), 355-370.
- Huebner, G., Hamilton, I., Shipworth, D., & Oreszczyn, T. (2015). People use the services energy provides but buildings and technologies determine how much is used. *Proceedings of the eceee Summer Study 2015.*
- Huebner, G. M., McMichel, M., Shipworth, D., Shipworth, M., Durand-Daubin, M., & Summerfield, A. (2013). The reality of English living rooms a comparison of internal temperatures against common model assumptions. *Energy & Buildings*. 66, 688-696.
- Nicolson, M., Huebner, G., & Shipworth, D. (under review). You've [not] been framed: loss and gain-framed marketing messages do not boost consumer demand for time of use electricity tariffs.
- Onwezen, M. C., Antonides, G., & Bartels, J. (2013). The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in proenvironmental behaviour. *Journal of Economic Psychology*, 39, 141-153.
- Triandis, H. (1977). Interpersonal Behaviour. Monterey, CA: Brooks/Cole.
- Schwartz, S. H. (1977). Normative influences on altruism. *Advances in experimental social psychology*, 10, 221-279.
- Seligman, C., Darley, J. M., & Becker, L. J. (1978). Behavioral approaches to residential energy conservation. *Energy and Buildings*, 1(3), 325–337.
- Stern P. C., Dietz T., Abel T., Guagnano G. A., & Kalof L. (1999). A value-belief-norm theory of support for social movements: The case of environmentalism. *Human Ecology Review, 6*, 81-97.
- Stern, P. C. (2000). Towards a coherent theory of environmental friendly behavior. Journal of Social Issues, 56(3), 407–424.
- Stern, P. C., & Gardner, G. T. (1981). Psychological research and energy policy. *American Psychologist*, 36(4), 329–342.
- Van Raaij, W. F., & Verhallen, T. M. M. (1983). A behavioral model of residential energy use. *Journal of Economic Psychology*, *3*(1), 39–63.