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All models are wrong.

But some are more useful.

Energy-economy-climate analysts are like painters.

They tend to fall in love with their models.
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Words of wisdom?



Apr 2015 3

EMRG 



Apr 2015 4

EMRG 

Inside the optimization modelers’ clinic
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Inside the simulation modelers’ clinic
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Make your model useful – and keep reforming it as the critical issues and 
questions change.

Avoid falling in love – be willing to change models if your model is not 
useful for the next critical questions.

Beware a lifetime devoted to pure optimization. Otherwise . . .
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Key messages?



Ancient history: top-down vs. bottom-up

Jaccard, 2009, “Combining top-down and bottom-up in energy-economy models” in Evans and Hunt 

(ed.), International Handbook on the Economics of Energy.

Conv. “top-down” econ models: no 

technology, simple behavior.

Conv. “bottom-up” spreadsheet 

models: tech-rich, naïve behavior, 

extreme partial equilibrium.

Optimization “bottom-up” models: 

tech-rich, naïve behavior, full energy-

economy equilibrium.

Hybrid simulation models: tech-rich, 

behavioral, some energy-economy & 

macro-economy equilibrium. 
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CIMS: a climate-energy policy simulation 

model for a specific jurisdiction

Typical tech-rich model:

Explicit tech details (cost, lifespan, efficiency, fuel)

Semi-endogenous retirement of old stock (time, cost)

Semi-endogenous service demand (growth, cost)

Exogenous industrial structure (external forecast)

Semi-endogenous structural change (macro elasticities)

Hybrid in having endogenous micro-econ simulation of new and retrofit 

tech choices and thus energy supply-demand, especially domestic
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CIMS: why these design choices?

Useful to policy-makers in one (or a few) jurisdiction(s) assessing 

whether their policies would re-direct the energy-economy system to a 

low emission path. (NEMS-US, CIMS-Canada.)

Equally important (!) – useful in exposing “faking it” policies (information, 

subsidies, soft regs). A counter to climate policy delusions.

However, less or not-at-all useful for:

Spatial policies (urban form, transit)

Redistributive, welfare and competitive impacts.

Simulating multi-jurisdictional efforts and global energy markets

I’ll next explain behavioral realism in CIMS, and then efforts to go 

beyond CIMS to achieve other “usefulness” objectives. 
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Pulp and paper
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Three key behavioural parameters:

– Discount rate (r) - time preference as reflected in actual 
decisions, excluding technology-specific risks

– Intangible cost (i) – technology-specific decision factors, 
especially differences in quality of service and cost risks

– Market heterogeneity (v) – reflects the diversity among decision 
makers in terms of real and perceived costs (logistic curve)

Key behavioral parameters for 

new & retrofit tech choices
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V – parameter reflects market heterogeneity

Relative LCC of Tech A to Tech B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25

M
a

rk
e

t 
S

h
a

re
 o

f 
T
e

c
h

 A
  

 

Power Parameter, v

100 50

20 10
6 3

1 0.5
Point where Tech A is 15% 

cheaper than Tech B

EMRG 

Apr 2015 14



Behavioural parameter estimation

15 years ago, we began discrete choice surveys to estimate the 

three behavioral parameters. This included stated and revealed 

preference studies in:

- transport mode choice (transit, bus, bike, walking, vehicles),

- vehicle choice (efficiency, fuel, motor type)

- industrial boilers and cogeneration,

- commercial and residential building insulation and HVAC.

Increasingly, we focused on cost and non-cost dynamics on 

technology choices, summarized by “the neighbor effect.”

EMRG 
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Discrete choice models to estimate r, i and v

AC

CCr





AC

j

ji





Use OLS to estimate v for which predictions from CIMS are consistent 

with those from the DCM model (error term size vs betas). 

jECOCCCjj eECOCCCU  

Standard discrete choice model for technology choice surveys

Survey / 

Observation
Empirical

Model (DCM)
CIMS’ r,
i and v
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ECOCAC  

Horne, Jaccard, Tiedemann (2005) “Improving Behavioral Realism in Hybrid Energy-Economy Models 

Using Discrete Choice Studies of Personal Transportation Decisions,” Energy Economics, V27.
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Rivers, Jaccard (2006) “Useful models for simulating policies to induce technological change,” Energy Policy,

Earlier (i) estimates from Canada-US surveys



We use a standard learning curve for 

capital cost (cc)

Declining capital cost function: progress ratio

– Links a technology’s financial cost in future periods to its 

cumulative production 

– Reflects economies-of-learning and economies-of-scale

– Parameters taken from literature
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Thus, technology-specific progress ratios (PR) determines the capital 

cost decline with cumulative production (N).
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We combine this with a market-share 

sensitive function for intangible cost (i)

Declining intangible cost function: neighbor effect

– Links the intangible costs of a technology in a given period (i) 

with its market share (MS) in the previous period

– Reflects improved availability of information and decreased 

perceptions of risk with rising market share

– Estimated from discrete choice surveys that include info on 

decision maker (income, attitudes to technology risk, 

environmental attitudes, etc.)
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Mau, Eyzaguirre, Jaccard, Collins-Dodd, and Tiedemann (2008) “The neighbor effect: simulating 

dynamics in consumer preferences for new vehicle technologies.” Ecological Economics, V68.



Combined effect: cost-adoption dynamic

Increasing returns to adoption: ↑users leads to ↑consumer acceptance for 

a given technology
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CIMS-US policy simulation with combined 

capital and intangible cost feedbacks
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Other useful models needed: urban form

As noted, CIMS is not spatial. In an urban setting, we know that 

preferences depend in part on urban form (density nodes, mixed land-

use, ease of access to alternative mobility options)

QUEST project. CIMS used in soft-linking mode with (1) GIS-based 

model for urban land-use and (2) urban transportation model. 

Behavioral estimates about location and mobility choices from the 

urban form and transportation literature, while CIMS simulates 

technology choices. Combined heat and power often set exogenously.
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Elasticities of substitution (K-E, interfuel) in CGE models are often 
based on historical data when we know that these must differ in 
future as new tech-fuel options develop, such as PHEVs.

We simulate CIMS for future decades with a complete range of price 
shocks to estimate ESUB values, and use these in a CGE.

Recent study in Canada of regional GDP impacts of different carbon 
pricing and revenue recycling policies with CIMS+CGE.

Recent study for EPRI using CIMS-US to estimate ESUB values for 
its CGE model.

In both cases we found smaller E-K and larger interfuel ESUBs than 
those estimated from historical data.
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Other useful models needed: macro-economic



EMRG 

Unburnable carbon 
Carbon budget 

Other useful models: 2 C and FF projects
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The 2 C target, the resulting carbon budget, and the problem of 
delusion. Every fossil fuel project claims to be within the budget.

CIMS is not global. Does not simulate global oil price. We need this 
price from the global energy-economy-emission models.

We ask global modelers to tell us the oil price in 2050. Answers are 
almost always above $50 / barrel. (Something to do with 
foresight and assumptions about scarcity perhaps.)

Yet new Canadian oil sands and other unconventional oil will develop 
at that price, even with the upward pressure on production costs 
from a high carbon price ($400/tCO2?).

Our latest work surveys major modeling groups for their 2 C 
estimates of carbon prices and oil demand, and from that we try 
to estimate our own oil price for use in project approval in NA.
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Other useful models needed: IAMs



2015 26Jaccard-Simon Fraser University

Oil sands 
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Yes. But how realistically? And on what empirical basis?

intangible costs? (i)

different time preferences? (r)

winner-takes-all? (v)

I look forward to hearing about the innovations in behavioral 
modeling at this workshop. And remember, . . .
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Can optimization models simulate behavior?
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Thank you.

(blog) markjaccard.com

(twitter) @MarkJaccard


