

Breaking down non-cost barriers to technology adoption is critical for the transport-energy transformation

International BE4 Workshop London, UK April 20-21, 2015

David McCollum, Keywan Riahi, Volker Krey (IIASA) Charlie Wilson, Hazel Pettifor (UEA) Kalai Ramea (UC-Davis) Oreane Edelenbosch (PBL) Zhenhong Lin (ORNL)

IIASA, International Institute for Applied Systems Analysis

ADVANCE project

- EU-FP7 project funded for four years (01/2013 12/2016) with 5.7 Mio €
 - ADVANCE: "Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies"
- Integrated assessment and energy-economy modeling teams:

PIK (DE; REMIND, MAgPIE), IIASA (AT; MESSAGE),
PBL (NL; IMAGE/TIMER), FEEM (IT; WITCH),
IPTS (EU; GEM-E3, POLES), UCL (UK; TIAM-UCL),
UPMF, Enerdata (FR; POLES), ICCS/NTUA (GR; PRIMES, GEM-E3)
CIRED (FR; IMACLIM)

• Topical research teams:

DLR (DE; RE integration & resources),

UEA (UK; consumer choice) & Utrecht University (NL; energy demand),

NTNU (NO; Material flows & LCA)

- International collaborators:
 - Non-EU modeling teams: JGCRI (GCAM), NCAR (iPETS), NIES (AIM), RITE (DNE21+)
 - Further international expertise: NREL (renewable energy sources), PIAMDDI & EMF (Model diagnostics & comparison), Simon Fraser Univ. (energy demand)

The context of ADVANCE: Exploring transformations

- Whole-systems models Integrated Assessment Models (IAMs) and E4 models are central tools for the analysis of climate change mitigation and sustainable development pathways, both globally and nationally.
- A large number of IAM scenarios have been generated over the past few years, and form an important basis for international assessments like the IPCC AR5, UNEP Gap Report, Global Energy Assessment etc. (~1200 scenarios in AR5 DB)

ADVANCE aims to develop a new generation of energy-economy and integrated assessment modeling tools.

The goal is to improve the mapping tools in key areas:

- with strategic importance for the assessment of mitigation pathways
- where substantial improvements are needed

Source: NASA

Source: Wikimedia Commons

Key areas for model improvement...

- <u>End-use technologies</u> providing energy services, drivers of energy demand, and potentials for energy efficiency improvements (WP2)
- <u>Heterogeneity</u> of consumer preferences, and how behavioral changes affect energy demand (WP3)
- **Innovation**, technological change and uncertainty (WP4)
- <u>Supply-side bottlenecks</u>: system integration of variable renewable electricity (VRE), material and energy requirements, infrastructure lock-ins, land-water-energy-nexus (WP5)

Objectives of ADVANCE WP3

(Task 3.1: Improving the representation of demand-side heterogeneity in IA and E4 models)

Participants in ADVANCE WP3, Task 3.1

- Review of empirical micro-studies led by <u>UEA</u>, supported by IIASA.
- Pioneering models for first implementation of behavioral aspects done by <u>IIASA (MESSAGE) and</u> <u>PBL (IMAGE)</u>.
- Further implementation/model development will be conducted by <u>UCL (TIAM), FEEM (WITCH), PIK</u> (REMIND), ICCS (GEM-E3), and DNE-21+ (RITE).

Research Questions

- Which consumer/driver attributes can be incorporated into IAMs in order to improve transport sector heterogeneity and better reflect barriers to technology adoption?
- How are IAM transport scenarios impacted by these improved representations of behavior and heterogeneity? (w.r.t. technology choice, climate policy costs, etc.)
- What incentives (policy and financial) might help to nudge consumer/driver behavior in a desired direction?

Modeling Approach

1. Disaggregate IAM transport modules so that LDV demands reflect a heterogeneous set of consumers

2. Monetize non-cost vehicle purchase considerations (barriers to technology adoption) by bringing "disutility costs" from a vehicle choice model into IAMs

Disaggregation of LDV Mode/Demands

Implement disutility costs from NMNL Model into IAMs

MA³T (Market Allocation of Advanced Automotive Technologies)

a scenario analysis tool for estimating market shares, social benefits and costs during LDV powertrain transitions, as resulting from technology, infrastructure, behavior, and policies

Example Disutility Cost Data

Units: 1000\$/vehicle

Year: 2020

MA3T_ID	MA3T_tech_name	RUEAA	RUEAM	RUEAF	RUEMA	RUEMM	RUEMF	RULMA	RULMM	RULMF	SUEAA	SUEAM	
1	Gasoline ICE Conv	0.45	0.00	1.20	0.45	0.00	1.20	0.45	0.00	1.20	0.50	0.03	etc. for all 27
2	Diesel ICE Conv	5.89	5.17	7.09	6.52	5.79	7.72	7.13	6.41	8.33	5.98	5.21	consumer
3	Natural Gas ICE Conv	13.47	9.64	19.78	16.50	12.67	22.81	19.48	15.65	25.79	13.90	9.87	arouns
4	Gasoline ICE HEV	1.88	1.44	2.61	1.92	1.48	2.65	1.96	1.52	2.69	1.82	1.41	groups
5	Diesel ICE HEV	3.54	2.80	4.76	5.76	5.02	6.98	7.94	7.20	9.15	3.45	2.75	
6	Natural Gas ICE HEV	13.52	9.63	19.92	16.54	12.66	22.95	19.51	15.63	25.92	13.03	9.37	
7	Gasoline PHEV10	2.68	2.31	3.34	3.70	3.33	4.36	4.69	4.33	5.36	2.62	2.28	
8	Gasoline PHEV20	3.00	2.67	3.61	5.00	4.67	5.62	6.97	6.64	7.59	2.95	2.64	
9	Gasoline PHEV40	1.37	1.14	1.91	1.46	1.23	2.00	1.55	1.31	2.08	1.34	1.13	
10	Hydrogen ICE	87.43	49.48	149.98	90.46	52.51	153.01	93.44	55.49	155.99	91.72	51.79	
11	Hydrogen FC	79.56	45.24	136.13	82.59	48.28	139.16	85.57	51.25	142.13	77.87	44.34	
12	Hydrogen FC PHEV10	53.21	27.51	103.30	56.21	30.51	106.31	59.16	33.46	109.26	52.94	27.68	
13	Hydrogen FC PHEV20	50.77	26.16	97.13	53.73	29.13	100.10	56.65	32.04	103.01	49.48	25.57	
14	Hydrogen FC PHEV40	36.72	18.89	77.32	39.70	21.87	80.30	42.63	24.80	83.23	36.26	18.81	
15	EV 100 mile	12.86	10.77	22.15	22.30	18.11	40.88	45.34	34.87	91.79	12.68	10.77	
16	EV 150 mile	17.08	11.07	26.46	30.49	18.47	49.25	65.34	35.28	112.25	16.90	11.07	
17	EV 250 mile	20.29	10.91	30.40	37.28	18.52	57.50	82.45	35.55	133.00	20.11	10.91	

Key:

RU (Rural) / SU (Suburban) / UR (Urban)

EA (Early Adopter) / EM (Early Majority) / LM (Late Majority)

M (Modest Driver) / A (Average Driver) / F (Frequent Driver)

Example: RUEAA = Rural + Early Adopter + Average Driver

These disutility costs would be added to the standard capital costs of vehicles in models (in \$/vehicle).

Breakdown of Disutility Cost Sub-components

EV100

H2FCV

Region: NORTH_AM; Year: 2030; Group: UREMA

Sensitivity Analyses to Estimate Disutility Cost Sub-components

Region: NORTH_AM

Breakdown of Disutility Cost Sub-components

EV100

Region: NORTH_AM; Year: 2030; Group: UREMA

Adding disutility costs leads to slower uptake of AFVs

Certain consumer groups adopt AFVs much faster

500 ppm CO₂eq

with disutility costs

Regional Differences in Disutility Costs

H2FCV

* H2 refueling infrastructure coverage and H2FCV diffusion are at 0%.

<u>Year</u>: 2030; <u>Group</u>: UREMA

Comparison of regional results in a 500 ppm CO_2 eq scep Nio

Research Questions

- How are IAM and E4 transport scenarios impacted by improved representations of consumer heterogeneity/behavior and better reflections of barriers to technology adoption? (w.r.t. technology choice, climate policy costs, etc.)
- What incentives (policy and financial) might help to nudge consumer/driver behavior in a desired direction?
- How much can be achieved by changing behavior and preferences?

Expected Findings and Policy Insights

- The inclusion of non-cost barriers to technology adoption in the decision-making algorithms of models leads to a considerably slower of advance vehicles than under norma imptions.
 - e.g., in climate policy set mauent electricity/hydrogr

- If these emoved, climate policy higher. costs ma
- **Policies supporting early-stage infrastructure can** bring down these barriers, while vehicle purchase subsidies can help compensate for them in the early market phase.

Expected Findings and Policy Insights

EV &

H2

share

Marginal abatement cost (MAC) curves will likely shift once models better reflect heterogeneity and non-cost barriers to technology adoption. The impact of vehicle subsidies can be analyzed; these will be affected by heterogeneity and non-cost barriers to technology adoption.

EV & H2 subsidy

(\$/vehicle)

Policies supporting the development of earlystage recharging/refueling infrastructure can aid the diffusion of new technologies.

Questions? Comments?

Extra slides

References and Documentation

 Kalai Ramea's (UC-Davis) IEW-2013, IAMC-2013, and BE4-2015 presentations

ORNL MA³T website: <u>http://cta.ornl.gov/ma3t/</u>

So far, 5 published and 5 working papers result from the MA3T project.

• Published peer-review articles

- Lin, Z., Dong, J., Liu, C., & Greene, D. (2012). Estimation of Energy Use by PHEVs: Validating Gamma Distribution for Random Daily Driving Distance. Transportation Research Record, 2287(1), 37-43.
- Lin, Z. (2012). Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers. International Journal of Alternative Powertrains, 1(1), 108-194.
- Dong, J., & Lin, Z. (2012). Within-day recharge of plug-in hybrid electric vehicles: Energy impact of public charging infrastructure. Transportation Research Part D: Transport and Environment, 17(5), 405-412.
- Lin, Z., & Greene, D. L. (2011). Promoting the Market for Plug-In Hybrid and Battery Electric Vehicles: Role of Recharge Availability. Transportation Research Record, 2252(1), 49-56.
- Lin, Z., & Greene, D. L. (2011). Assessing Energy Impact of PHEVs: Significance of Daily Distance Variation over Time and Among Drivers. Transportation Research Record, 2252(1), 99-106.

Working papers

- Lin, Z.. BEV Range Optimization. Submitted and revising.
- Greene, D.L., Lin, Z, Dong, J. Analyzing the Sensitivity of Hydrogen Vehicle Sales to Consumers' Preferences. Submitted manuscript.
- Lin, Z, Dong, Greene, D.L.. Hydrogen Vehicles: Impacts of DOE Technical Targets on Market Acceptance and Societal Benefits. Submitted manuscript.
- Dong, J., Liu, C., Lin, Z.. Charging Infrastructure Planning for Promoting Battery Electric Vehicle Market: An Activity-Based Assessment Using Multiday Travel Data. Working paper
- Documentation for the Market Acceptance of Advanced Automotive Technologies (MA3T) model. Working paper.

Source: Zhenhong Lin (ORNL)

Components of Disutility Cost (illustrative, 2020)

Which dimensions are uncertain, and which are the most important?

consumer groups are enough

Key determinants of disutility costs

All of these things could/should vary by region and over time. Also by scenario.

Workplan Proposal for Task 3.1

Year:	2014					2015														
Month:	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Project Month:	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Review of microstudies & Report on microstudies																				
Pioneering implementation in MESSAGE, IMAGE																				
Distribution of disutility cost data to other teams																				
Implementation in TIAM-UCL, WITCH, ReMIND, GEM-E3																				
Run scenarios based on updated model implementations																				
Multi-model transport paper																				

Deadline for deliverable
Work by IIASA
Work by other teams
Report/paper writing

Deliverable 3.2

Improving the behavioural realism of integrated assessment models of global climate change mitigation: a research agenda (C. Wilson, H. Pettifor, D. McCollum)

- Submitted in Month 19 (July 2014), instead of originally planned delivery date of Month 30 (~June 2015)
- Now online at: <u>www.fp7-advance.eu</u>
- Derivative papers in preparation; insights currently feeding into modeling

Deliverable 3.2

- Specific focus on factors influencing alternative fuel vehicle purchase decisions
- Identifies importance and challenges for introducing behavioural features into IAMs.
 - typology of behavioural features
 - synthesis of current modelling approaches
 - empirical basis for behavioural features (focusing on AFVs)
 - discrete choice experiments (n=16)
 - social influence studies (n=72)

VAN	CE
	Project No 308329
	ADVANCE Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies
FP7- Colla	Cooperation-ENV borative project
	DELIVERABLE No 3.2 Report on micro-studies on behavioural changes and socio-spatial heterogeneiti
	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014
Start	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48
Start Dura Orga	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA
Start Dura Orga Revi:	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA sion: 0
Start Dura Orga Revi: Pro	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA sion: 0 ject co-funded by the European Commission within the Seventh Framework Prog
Start Dura Orga Revi: Pro	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA sion: 0 ject co-funded by the European Commission within the Seventh Framework Prog Dissemination level
Start Dura Orga Revi: Pro PU PP	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA sion: 0 ject co-funded by the European Commission within the Seventh Framework Prog Dissemination level Public Restricted to other programme participants (including the Commission Services)
Start Dura Orga Revi: Pro PU PP RE	Due date of deliverable: 30 June 2015 Actual submission date: 21 July 2014 date of project: 01/01/2013 tion: 48 nisation name of lead contractor for this deliverable: IIASA sion: 0 ject co-funded by the European Commission within the Seventh Framework Prog Dissemination level Public Restricted to other programme participants (including the Commission Services) Restricted to a group specified by the consortium (including the Commission Services)

Motivation & Background

How important and/or useful for IAMs are different behavioural features in discrete choice models of vehicle adoption?

	Debeview	Effect size /					
	Benaviour	influence on choice					
		Age	high				
	Heterogeneous	Value orientation	medium – Iow				
	decision makers	Gender	medium				
		Environmental Awareness	high - medium				
		Education	medium-low				
	Non-optimising heuristics	Driving practices	low				
		Refuelling network	high				
	Non-monetary benefits	CO2 emissions	high - medium				
		Range, battery time, warranties	high				
		Refuelling location	high - medium				
	Risk preferences	Vehicle range	high - medium				
	(discount rates)	Fuel savings	medium				
		Social influences	high - medium				
	Social influences	Neighbourhood effects	high - medium				
		Refuelling density	high				
	Contextual constraints	Refuelling location	high				
		Incentives	high				
	Source: Pettifor and Wilson (L	IFA)					

Source: Pettitor and Wilson (UEA)