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Improving behavioural realism of global energy-
economy models: model-pull or evidence-push

model <---- observed behaviour

observed behaviour e > model



(1) What ‘behavioural features’ are there?

(2) Are behavioural features included in models?

(3) Is there robust evidence for behavioural features?

(4) Is there a conceptual basis for behavioural features?

(5) How strong is effect of behavioural features?

(6) How can behavioural features be modelled?
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Many features of human behaviour could be
modelled to improve mitigation policy analysis

Typology of ‘behavioural features’ (relating to energy demand)

* decision making: e.g., non-monetary preferences, non-optimising heuristics
* social influences: e.g., imitation, conformity, status, social networks

* contextual influences: e.g., infrastructure, governance, culture

and an enabler

* heterogeneity: e.g., end-user preferences

‘behavioural features’ =
anything beyond price-responsiveness under income constraints
(or: a narrowly financial utility maximiser)
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Global energy-economy models analyse long-term
climate change mitigation potentials, costs ...
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Global energy-economy models have limited and

partial representations of behavioural features
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There is strong empirical evidence that behavioural
features are influential and policy-relevant

Extensive literatures of empirical studies

(stated & revealed preferences)

systematic review of empirical studies (n>70)
focus on vehicle choice

good evidence of moderate-to-strong effects
across typology of behavioural features

non-monetary preferences

social influence

»
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Social influence on technology adoption has strong
conceptual foundations

D|FFUS[ON Diffusion = communication over time about an
innovation among members of a social system
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A meta-analysis of 21 empirical studies found robust
evidence of moderate social influence on vehicle choices

Author(s)

Adjemain et al 2010
Aini et al 2013
Axsen et al 2013
McShane et al 2012
Baltas et al 2013
Gaker et al 2010
Goetzke et al 2012
Grinblatt et al 2008
Heutel et al 2010
Hsuet al 2013
Hutter et al 2013
Mohammad et al 2011
Jansson et al 2010
Kulkarniet al 2012
Moons et al 2012
Schuitema et al 2013
Shemesh et al 2014
Wiedman et al 2011
Shaetal 2012
Zhangetal 2011
Zhu et al 2013
Summary Effect
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Information transmission
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Social norms

Social Influence

mean effect size of 0.241**

+1 s.d. increase

Corr'r' Cllower ClUpper Z Value Salue
0.207 0.126 0.285 4.947 0.000 .
0310 0.179 0.430 4.510 0.000 ' !
0.213 0.074 0.344 2.975 0.003 ’ !
0.219 0.159 0277 7.029 0.000 T
0.289 0.134 0.430 3.593 0.000 ¢ !
0.362 0.107 0.573 2.735 0.006 ' 1
0.560 0.536 0.583 36.458 0.000 —a—
0.031 0.031 0.031 466.815 0.000
0.456 0.433  0.479 33.484 0.000 =
0.000 -0.049 0.049 0.012 0990 H———
0.150 0.039 0.257 2.653 0.008 : '
0.574 0498 0.641 12.014 0.000 e
0.436 0.398 0.472 19.984 0.000 D
0.154 0.054 0252 3.007 0.003 ‘ f
0.132 0.076 0.187 4.580 0.000 A
0.220 0.184 0.255 11.677 0.000 T
0351 0333 0369 34.713 0.000 -
0.100 0011 0.188 2.191 0.028 —
0.020 -0.009 0.049 1.348 0.178 =
0.115 0.039 0.189 2.975 0.003 —
0.036 0.020 0.052 4.537 0.000 -
0.241 0157 0322 5505 0.000 .
-0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600
Effect size (correlation ‘r’)
- . . .
> Vehicle choice / Propensity to purchase
> +0.24 s.d. increase



Social influence effect size varies between countries,
as predicted by measures of cultural difference

Pragmatic: greater individuality, acceptance of change, old traditions replaced
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Empirical evidence can support existing modelling
efforts (shaped by model structure and function)

model <---- observed behaviour

observed behaviour > model



Social influence is captured in declining risk premiums
of risk-averse vehicle purchasers (MA3T / MESSAGE)

Attitude toward
technology / risk

http://cta.ornl.gov/ma3t/

Light-Duty Vehicle .
Consumers/Drivers Lin, Z. & OAK

Greene, D.L. RIDGE
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risk aversion declines
as market penetration increases
-> social influence effects

meta-analysis effect size:
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Relationship between social influence effect and
cultural values enables regional parameterisations

social influence effect size

use of empirical relationship

Social Influence Effect Sizes

Predicted for Countries in Empirical Studies
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Can empirical evidence also determine direction of
model development ... in existing models?

model <---- observed behaviour

observed behaviour e > model



Implementing a meta-analytic effect size in global
energy-economy models is ... problematic

discrete modelling constraints
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(1) What are important ‘behavioural features’?

(2) Are behavioural features included in models?

(3) Is there robust evidence for behavioural features?

(4) Is there a conceptual basis for behavioural features?

(5) How strong is effect of behavioural features?

(6) How can behavioural features be modelled?

- model-pull: modified, improved <-> complicated, assumed
- evidence-push: bespoke, unconstrained <-> usefulness
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