

Imperial College London

Agent-based modelling of spatial and temporal energy and transport demands

Workshop on integrated energy system models incorporating spatial and temporal detail

Koen H. van Dam, Gonzalo Bustos-Turu, Salvador Acha and Nilay Shah

Department of Chemical Engineering, Imperial College London, UK

24 May 2016

Overview

- Context smart cities
- Methodology representing decision makers as agents
- Case study 1 smart charging of electric vehicles
- Case study 2 heat and electricity demand Isle of Dogs
- Software tools a quick look at Repast Simphony
- Final thoughts...

Context

New technologies to be integrated in cities

Understanding spatial and temporal demand

(Dukes 2015)

(DECC National Heat Map 2015)

Methodology

Activities leading to energy demand

Agent-based modelling

- Agent-based modelling is a *computational* method that enables a researcher to create, analyze, and experiment with *models* composed of *agents* that interact within an *environment* (Nigel Gilbert, 2007)
- Self-organisation and emergence

 Modelling the decision maker, rather than the output of the decision

Advantages of bottom-up approach

- Change city layout, infrastructure, technology access...
- Policies that affect behaviour, pricing, taxes...

(Richard Feynman, 1988)

(Joshua Epstein, 2005)

Agent-based energy demand model

Static electricity and heat demand

Mobile electricity demand

_ _ _ _

Implementation in Repast

📧 🖄 🏠

SmartCityModel - Repast Simphony

Run Options Parameters Scenario Tree User Panel

<u>File Run Tools Window</u>

Scenario Tree

SmartCityModel

🖮 📃 maincontext

Case study 1

- Spatial: London boroughs individual cars
- Temporal: 24 hours 5 minute resolution

Case 1 – Smart charging of electric vehicles

- Determining optimal charging of electric vehicles is key in developing an efficient and robust smart-grid
- Need to understand vehicle movements and predict demands to analyse impact on grid and optimise charging profiles
- Link energy and transport infrastructures
- Understand combined effects of electrification of transport and electrification of heating

Case study area – West London

Energy demand - Baseline

Impact of electric vehicles and heat pumps

Gonzalo Bustos-Turu, Koen H. van Dam, Salvador Acha, Christos N. Markides, Nilay Shah (2016), *Simulating residential electricity and heat demand in urban areas using an agent-based modelling approach*, IEEE Energycon 2016, Leuven, Belgium

Different smart charging strategies

Plug and forget

Plug and forget (50%)

Network Costs

Network Losses

Results: Single-objective optimisation

Results: Multi-objective optimisation

$\min f(EvP_{n,t}) = \omega_1 \times EvCh(EvP_{n,t}) + \omega_2 \times EvCO2(EvP_{n,t})$

Model integration – ABS/MOO/LCA

Centre for Process Systems Engineering

Incorporating life cycle assessment indicators into optimal electric vehicle charging strategies: An integrated modelling approach (ESCAPE2016)

Gonzalo Bustos, Miao Guo, Koen H. van Dam, Salvador Acha, Nilay Shah

Case study 2

- Spatial: MSOAs individual buildings
- Temporal: 24 hours 5 minute resolution in summer/winter

Case 2 – Isle of Dogs energy demands

(Land use consultants and the National Energy Foundation, July 2008)

Socio-demographics

14000 12000 10000 8000 6000 4000 2000 0

Population

Economically active and employed

■ Tower Hamlets 028 ■ Tower Hamlets 030 ■ Tower Hamlets 031

■ Tower Hamlets 032 ■ Tower Hamlets 033

Source:ONS

Land use distribution

Retail area

Work area

Leisure area

Source:ONS

Buildings and roads

Main roads

Source: Ordnance Survey, DigiMap, OpenStreetMap

Preliminary outputs

-Tower Hamlets 032-Tower Hamlets 033

Preliminary outputs

Software tools

Repast Simphony

- Offers GUI for model launch, step and batch run, data collection, visualisation of agents and data
- Java implementation
 - Full connectivity with external software libraries and tools (e.g. optimisation, visualisation, data sets)
 - But.... that means you have to build most of your model from scratch
- Agents organised in (sub)contexts
- Model on grid, 2D or 3D space
- GIS integration
- Open-source software

repast.sourceforge.net

Repast Simphony – City modelling

- Can load ESRI shapefiles (.shp)
 - Polygon (e.g. buildings)
 - Lines (e.g. transport infrastructure)
 - Points (e.g. people)
- Instances of Java objects are created with properties set based on values in .dbf file
- All objects loaded can be seen as an agent, and thus can be scheduled to become active
- Load specific agents from file, or generate a synthetic population of *n* agents
- Tutorial/demo: Repast City https://github.com/nickmalleson/repastcity

Final remarks on Repast Simphony

- Suitable for complex projects where interoperability and full control are important...
- ... but at a cost of longer project development and steep learning curve
- Easy to use with spatial data from OpenStreetMap, Ordnance Survey, etc.
- Works particularly well for when you want to make changes to the spatial layout of your agent-based simulation without changing your implementation
- Used successfully in undergraduate and postgraduate thesis projects, even without prior Java or object-oriented programming knowledge

Conclusions

Conclusions

- Model development to understand main factors in urban energy demand, with different levels of spatial (building—city) and temporal (minutes—annual) detail
- Bottom up approach enables us to experiment with different technologies, but also how they are used
- Models can be used to influence policies and technology decisions
- Collaborative decision making: using simulation as a design tool
- Current and future work: charging infrastructure (with TfL, GLA), heat networks (with EDF), water and sanitation (with Ghana Water Company and others), urban area redesign (with LLDC, Engie and others), etc.

Imperial College London

Agent-based modelling of spatial and temporal energy and transport demands

Workshop on integrated energy system models incorporating spatial and temporal detail

Koen H. van Dam, Gonzalo Bustos-Turu, Salvador Acha and Nilay Shah

email: k.van-dam@imperial.ac.uk