Synthesis of Qualitative Narratives and Quantitative Models into Consistent Descriptions of Low Carbon Energy Transitions

John Barton
CREST
Loughborough University
i.p.barton@lboro.ac.uk

Narratives and Models

Market Rules
Central Coordination
Thousand Flowers

D-EXPANSE Model Electricity Generation Economic Optimisation

Energy
Demands
Heating,
Transport

FESA Model
Hourly Time Step
Grid Balancing
All Sectors of Economy
Fuel and Carbon

The Transition Pathway Narratives

Based on the Realising Transition Pathways project, collaboration of 9 universities and E.On: http://www.realisingtransitionpathways.org.uk/

Source: Jacquie Burgess & Tom Hargreaves – Transition Pathways Project

Governance narratives

- "Market Rules" storyline envisions that market-led logic will deliver low-carbon transition with the focus on large-scale low-carbon generation;
- "Central Co-ordination" storyline envisions increased role of the government in shaping this transition through contracts for large-scale low-carbon generation;
- "Thousand Flowers" storyline envisions the wider civic society, including households, communities, local governments and non-governmental organizations, playing a leading role through bottom-up initiatives and focus on smaller-scale generation.

D-EXPANSE

Picture: Evelina Trutnevyte – Transition Pathways Project

EXPANSE model (Trutnevyte, 2013; Trutnevyte and Strachan, 2013) **EXploration of PAtterns in Near-optimal energy ScEnarios**

- Bottom-up, technology rich, cost-optimisation model
- Includes exploration of near-optimal pathways, e.g.
 that have up to 20% higher total system costs
- Selects a smaller set of maximally-different pathways

'Translation' of narratives into modeling inputs for D-EXPANSE

	Market Rules			Central Co-ordination			Thousand Flowers		
	2020	2030	2050	2020	2030	2050	2020	2030	2050
Minimum installed capacity, GW	106	130	174	103	122	141	107	134	149
Annual electricity generation and import, TWh/year	404	469	560	380	425	448	334	341	328
Share of coal CCS, %	≥10%			≥10%			-		
Share of gas CCS, %	≥10%			≥10%			-		
Share of nuclear, %	≥10%			≥10%			-		
Share of offshore wind, %	≥10%			≥10%			≥10%		
Share of onshore wind, %	-			-			≥10%		
Share of solar PV, %	-			-			≥5%		
Share of renewable-based CHPs %	•			-			≥10%		
Maximum greenhouse gas emissions, gCO ₂ /kWh	300	70	20	300	70	20	300	70	20

Central Co-ordination Installed Capacities, GW

Cost-optimal

Maximally different 2

Maximally different 1

Maximally different 3

Market Rules

Thousand Flowers

Cost-optimal

Maximally different 2

Maximally different 1

Maximally different 3

9 Alternative Pathways, 2010 to 2050

FESA

Picture: Evelina Trutnevyte – Transition Pathways Project

'FESA' = Future Energy Scenario Assessment

(Barnacle et al., 2013; Barton et al., 2013)

Linking with FESA

- Take generation capacities from D-EXPANSE
- Take technology efficiencies, availabilities and turn-down ratios from D-EXPANSE
- Take total electricity demand from D-EXPANSE
- Use previous FESA values for non-electric energy use, separately translated from the narratives.

Inflexible and Uncontrolled Generation Components in 2050

Flexible, Despatchable Generation Components in 2050

Remaining Imbalances After Energy Storage in Year 2050

Market Rules Variant 2 on 18th January

(Day of Highest Net Demand, 2050)

Market Rules Variant 2 on 1st January

(Day of Lowest Net Demand, 2050)

Thousand Flowers Variant 2 on 21st September (Day of Highest Net Demand, 2050)

Thousand Flowers Variant 2 on 11th February (Day of Lowest Net Demand, 2050)

Capacity Factors of Inflexible Generation (Mostly unchanged across pathways)

Capacity Factors of Flexible Generation

Conclusions

- Market Rules and Central Coordination by their technology priorities and pathways are relatively similar
- Thousand Flowers is the most different pathway
- Detailed analysis in FESA shows that variations perform very differently (system imbalance)

Future research needs

- Explore how to 'translate' narratives into modeling parameters even more systematically
- Extend translation to transport, heat and industrial uses of energy
- Use FESA to select only the viable maximally different pathways.
- Feedback to the narratives in order to improve their consistency