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Motivations

Uncertainty is inherent to the climate change

 Incomplete understanding of climate change in many respects
(Heal and Millner, 2013)

* Representing, analysing and reporting uncertainty for setting
climate policy is required (IPCC)
+ Large amount of models’ outcomes are produced
- Probabilistic version of models (Monte-Carlo, Stochastic
programming, ADP)
+ Models intercomparison: climate model (CMIPs), Integrated
assessment models (MIPs), impact models (1SI-MIP)
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Motivations

Decision Making criteria

+ Decision making criteria and preferences over risks have
been shown to have an impact on the optimal abatment
strategy (Dietz, Millner, Lemoine, Traeger, Ackerman, ...)

+ The maximisation of expected utility and CBA are difficult to
apply under deep uncertainty (Kunreuter et al., 2013)

+ Variety of decision making criteria, but no single one is
dominating the others (Heal and Millner, 2013)
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Research approach

Steps

1. Explore the space of future scenarios in an integrated
assessment framework

2. Apply a set of decision rules on outcomes

Capturing the current knowledge of uncertainty

 from a dataset of multi-model outcomes
+ from a probabilistic version of WITCH

Climate policy is a carbon budget
« Cumulative CO» emissions (2000—2100)
* Robust indicator for the warming (Meinshausen, 2009)
+ Associated climate targets (Steinacher et al., 2013)
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Methodology
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Model intercomparison projects (MIPs)

* 6 research projects:
+ EMF22, EMF27, LIMITS, AMPERE, ROSE, AME
* Policy scenarios run by many I1AMs:

+ Common protocol
+ Characteristics: climate targets, technology options, tax levels,
delay of action, type of cooperation

 Results database to be published
Dataset description

+ Long-term policy assessment (until 2100)

+ 31 versions of 10 models (including WITCH, TIMES, IMAGE,
MESSAGE...)

* 164 policy scenarios

+ 752 carbon budgets
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Emissions
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Mitigation costs versus carbon budgets
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CMIP5 emulator

SNEASY (Urban and Keller, 2010) is a simple Earth System Model
composed of

 aclimate module based on DOECLIM,

+ a carbon-cycle model, including feedbacks from CO»
concentration and temperature,

Inputs
* CO, emissions,
* non-CO, radiative forcing components

We estimate the geophysical parameters from the CMIP5
temperature projections using a Bayesian inversion technique
based on Monte-Carlo Markov Chain (MCMC).
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Climate: posterior marginal distributions

Probability densities
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Climate: Temperature projections
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Climate: temperature distributions
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Economic impacts

Tol (2009, 2013) review estimates of global economic impact of
climate change from 16 studies:

Mean estimates: Nordhaus(1994a), Frankhauser(1995), Tol(1995), Nordhaus
and Young(1996), Mendelshon et al. (2000), Nordhaus and Boyer (2000),
Maddison(2003), Rehdanz and Maddison (2005), Nordhaus (2008), Maddison and
Rehdanz (2011), Bosello et al. (2012)

Skewed distribution: Nordhaus(1994b), Plambeck and Hope(1996), Hope(2006)

Normal distribution: Tol (2002), Nordhaus (2006)

Impact estimates only for low warming (<3°C)
We build 3 prior damage functions
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Prior damage functions
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1. Exponential: I(T) = exp(8T?) — 1 (Weitzmann, 2010)
2. Quadratic: /(T) = 81T + (2 T2 (Tol, 2009)
3. Sextic: I(T) = 1 T2 + B=T® (Weitzmann, 2012)
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Utility function

Discounted GWP loss:

Ueis) = ey Ve 69 (1 e tis)

+ ¢: carbon budgets

- s: states of the world

- t € {2010,2020,...,2100}

* Yu(c, t; s): GWP including mitigation costs
* I(c, t; s): Economic impacts

Ramsey’s rule

r(t) = p+ng(1),
p is the pure rate of time preference, 7 is the risk aversion and g(t)

is the average growth rate since fy.
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Set of decision rules

Expected Utility-based rules

Subjective EU maxcec E(U(c; s))

Savage (1954)

Maxmin EU maxccc (Minycn E(U(c; 8))) Gilboa & S. (1989)
a-Maxmin EU maxcec(aminzen E(U(c; s))+ GMM (2004)

(1 — a) max~cn E(U(c; s)))
Non-probabilistic rules
Maxmin maXxcec (Minses U(c; s)) Wald (1945)
a-Maxmin maxcec (o minses U(c; s)+ Arrow & H. (1972)

(1 — @) maxses U(c; s))

Minimax Regret  mingec (Maxses [(Maxe e U(C'; 8)) — U(c; s))])

Savage (1951)

+ Ambiguity: Subjective EU (neutral) versus Maxmin EU (full)

* a-rule: pessimistic versus optimistic decision maker

* max ~ 99.9%
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Undiscounted loss versus carbon budgets
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Carbon budget selection: EU rules
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Temperature limits
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Temperature limits
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over the 21st century [%)]
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Conclusions

1. Uncertainty very significant, especially on the damage

2. Quadratic damage function unsuited for climate policy
recommendations

3. DM criteria matter for optimal carbon budget, as much as or
even more than discounting

4. Only Maxmin and minmax regret yield policies consistent with
2°C

5. Ambiguity aversion doesn’t seem to matter too much

+ Smoother response with the probabilistic version of WITCH
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Thanks!
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