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Planning
requires
estimates of
future values
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[Pindyck, 1999, Energy Journal]
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Figure 1. Log Price of Crude Oil and Quadratic Trend Lines
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We also need the
ability to design
portfolios of
stakeholder actions.

Two maximally different energy
portfolios that provide near-optimal
performance in a simple energy model
of the UK [Trutnevyte and Strachan,
2013, International Energy Workshop]
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Definition of ) Refinement of

Many Objective Robust hces [ e
Decision Making (MORDM)

Measures of , -§
effectiveness ; ®
'S
* The approach combines methods for 1=
generating new policy alternatives and — ey
. eneration of | Additional 3 :
evaluatl ng them Under deeply alternatives [ alternatives ’
uncertain input ensembles N A
* Collaboration between RAND : 5
CorForatlpn and research groups of naron of £
Prof. Patrick Reed and my own O
e Methods v e )
. mU(gtEc)A?Jg;t;\ﬁizEggéunﬁonarv Algorithm recommendation 1 promies. ]
e Robust Decision Making ‘|{ %
. Yes ~~..._ No P
MORDM: Kasprzyk, Nataraj, Reed, oo L o——— omeeaeeeeneeeeend 2
Lempert [2013], Env. Mod. Soft ¥ Figure: [Bruen, 2008, HESS]
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Outline

Generating Alternatives
- Multiobjective Evolutionary]
Algorithms (MOEAs)

Problem Formulation Uncertainty Analysis
- Uncertainties ("X") Stakeholder Collaboration - Simulate outcomes for

- Levers ("L") »‘ using Interactive Visual uncertainty ensemble
- Relationships ("R") Analytics - Choose robust solutions
- Measures ("M") —
Scenario Discovery and
Tradeoff Analysis
- Identify scenarios that

illuminate vulnerabilities

- Examine tradeoffs with policies
that reduce vulnerabilities

1. Introduce MORDM
framework

2. Show water

planning case study 3. Suggest future
research
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> |Generating Alternatives
- Multiobjective Evolutionary
Algorithms (MOEAs)

Problem Formulation Uncertainty Analysis

- Uncertainties ("X") Stakeholder Collaboration - Simulate outcomes for
- Levers ("L") using Interactive Visual uncertainty ensemble

- Relationships ("R") Analytics - Choose robust solutions

- Measures ("M")

Scenario Discovery and

Tradeoff Analysis
- Identify scenarios that

illuminate vulnerabilities
- Examine tradeoffs with policies
that reduce vulnerabilities
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Which solutions do well under a large
number of deeply uncertain trajectories?

How do we characterize values of the

uncertainties that cause vulnerabilities for
those robust solutions?
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Lower Rio Grande Valley (LRGV) faces rising demands with

variable supply.

= Rapid population growth and high
irrigation water use

= Existing water market with
transfers from ag to urban

= How can a single city use a water
market to increase the reliability
of its water supply?

e
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[Example data courtesy G. Characklis]
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What is the outcome of adding reservoir rights to meet
supply?

13
= Each point: a volume 12\" Dominated
of reservoir rights
= Non-domination (i.e., .
: L Q 11
highest reliability at O —
each cost level) l
= Shows increasing cost 10
of providing reliability acion.
9 | I I
1.000 0.995 0.990 0.985 0.980
<€ Reliability

[Kasprzyk et al., 2009, WRR]
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Can the market help lower costs?
What other objectives are important for planning?
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A many-objective approach to the LRGV helps answer these
guestions.

= Portfolio of 3 instruments
— Permanent rights: non-market supply, % of reservoir inflows
— Spot leases: immediate transfers of water, variable price
— Adaptive options contract: reduces lease-price volatility Problem

= Monte Carlo simulation model considers natural variability Formulation

— Sampling of historical data for hydrology, demands, lease pricing

= Use a Multiobjective Evolutionary Algorithm to generate

alternatives :I:

— Up to 6 objectives calculated using expected values under 10-year planning

horizon Generating
Alternatives

[Kasprzyk et al., 2009, WRR]
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Many-Objective Results e 1"

= Visualize rights (color), leases
(orientation), options (size)

S
= Two distinct groups of solutions: b
1. rights-dominated gmg
2. market use v o 33.1
: . = O o
= Qver-reliance on traditional water o !
supply raised costs and surplus A 3
water volumes! Y,
it T 11.2
154.366 K »‘» _, \L /%'1 Cost
. = - P > 6
2714w —_ )V (10 " USD)
\40
Number of 0.06
Leases

[Kasprzyk et al., 2012, Env. Mod. Soft.]
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Our selected solutions were based on expected-value objective calculations.

= All objectives used a single 51.5
distribution of input data to
calculate expectation

= |ssue: Is our choice of solution
biased by assumptions of input
data?

= Challenge: Deep Uncertainty,
where decision makers can’ t
characterize full set of events or

33.1

(10° m’)

Surplus Water

11.2
probabilities
154'366 ; F /0.1 Cost
| ' (10° USD)
Q 9.0
Number of 0.06 7

Leases

[Kasprzyk et al., 2012, Env. Mod. Soft.]
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> |Generating Alternatives
- Multiobjective Evolutionary
Algorithms (MOEAs)

Problem Formulation Uncertainty Analysis

- Uncertainties ("X") Stakeholder Collaboration - Simulate outcomes for
- Levers ("L") using Interactive Visual uncertainty ensemble

- Relationships ("R") Analytics - Choose robust solutions

- Measures ("M")

Scenario Discovery and

Tradeoff Analysis
- Identify scenarios that

illuminate vulnerabilities
- Examine tradeoffs with policies
that reduce vulnerabilities
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Scaling factors modify input data.

Baseline historical
data

Values exceeding
highest/lowest 25%
of data scaled N
times likelier

Scaling factors
unigue to each
variable, sampled as
point values

How wrong do we
have to be to cause
performance
failures?
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Uncertainty ensemble

Table 1: Scaling Factors

* State of the world (SOW):

value for each of these Low Inflows
d|men5|0ns High Losses 1 10
High Demands 1 10
- A SOW COntrO|S hOW |npUt High Lease Prices 1 10
data is sampled within the rossesin storage . 0
Monte Ca rIo simulation Table 2: Scalar Model Parameters
Initial Rights 0.0 0.4
Demand Growth Rate 1.1% 2.3%
Initial Reservoir Volume 987 mill. m3 2714 mill. m3
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Evaluating robustness

= Apply ensemble of 10,000 LHS samples of o | costin bassling
uncertainties (SOWs) to each solution SOwW
= Sort values and calculate: > <
39
— 10 percentile (for measures to be maximized) »
— 90" percentile (for measures to be minimized) "
= Percent deviation : 45
48
_ _ Cost in 90" percentile
Co0 = Couse 1100 = 21 =37 1100 =37.8% 50 SOW
Cbase 37 51 <

55
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Solution X costs 37.8% more in the 90 percentile of the
ensemble than it did under the baseline SOW.

We now visualize “percent deviation” across all solutions and
measures.
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Percent deviation shows us robustness of the tradeoff space.

(a) Color: Percent Deviation in Cost

Sol. 2 ’ 24%
— | e |
19%

51.5
Sol. 3
s Sol. 4 (Compromise) I 14%
© Robust
S ( )
g u:o 33.1 9%
o
: .
) 4%
11.2
14. >
5§36 = 101 Cost
(10° USD)

Number of 0.06 9.0
Leases

= Solution 4 exhibits low deviation in critical reliability and

cost.

= [t comes from a different tradeoff region than Solution 1-3.
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(b) Color: Percent Deviation in Critical Reliability

I35%
51.5
27%
Sol. 3
o (Compromise) I 18%
©
= £
o
> ’
v 0%
11.2
145 10.1  Cost
(10° USD)

Number of 0.06 90
Leases

Legend
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Scenario Discovery

threshold

CDF —

My

Step 1: Set percentile
performance threshold
using one or more
measures, (m)

scenario box X
CS) I J ® A 1
S 0o o0 .
X 8000. ® Low High
o eo 0O X
2 gé)o ooo : — 2
oo OO Ooo Low High
Q Q X
X 3
1 Low High
Step 2: PRIM creates Step 3: Results show important
“boxes” describing values for uncertainties (x)

values that cause
violations of thresholds

= Patient Rule Induction Method (PRIM) is an interactive algorithm for

discovering scenarios

— Instead of specifying scenario values a priori, the discovered ranges are clearly linked to

policy vulnerabilities.

[@_J_] University of Colorado
Boulder
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Scenarios Where the “Robust” Solution Performs Poorly

(a) Scaling
Factors

Low Inflows
High Losses

High Demands

High Lease
Prices
Losses in
Storage

(b) Model
Parameters

Initial Rights

Cost
(Cost, Cost Variability)

2
L
—34

1 4 7 10

Reliability
(Reliability, Critical Rel.,
Drought Rel.)

6.5
-
L
3.

1 4 7 10

Market Use

(Number of Leases)

7.5
e
.
e

1 4 7 10

Scaling Factor (Extremes are __ times likelier)

Cost
(Cost, Cost Variability)

0.00 0.13 0.27 0.40
Demand Growth 1.4%
Rate 111 15 1.9 2.3
Initial Reservoir 1.8 x 10°
Volume 10 1.6 211 2.7
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Reliability
(Reliability, Critical Rel.,
Drought Rel.)

0/24
0.00 0.13 0.27 0.40
111 1.5 1.9 2.3
1.0 1.6 2.1 2.7

Model Parameter Value

c— - —g - -

Market Use

(Number of Leases)

0.00 0.13 0.27 0.40
1.1 1.5 1.9 2.3
1.0 1.6 2.1 2.7

e — .. — Slide 21



Conclusions

= Adding multiple objectives helps confront cognitive myopia

— Aggregated, low dimensional formulations make decision makers ignore critical aspects
(such as reducing surplus water)

" Fx post monitoring and adaptation: Decision makers can use scenario discovery
to determine most important uncertainties for future planning

= MORDM can be applied across a wide array of problems, using simulation
models of varying size

— Screening models, regional planning, agent-based modeling
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Future Research: Water planning considering energy

* Tarrant Regional Water District - oo fAres | o
(TRDW) serves more than 1.7 e L e o
million people 'f
— Cities of Fort Worth and Arlington
— Raw water supplier

— 7 reservoirs, over 150 miles of
pipeline

= High energy costs

— Pumping up 400 feet of elevation

— In 2012, $17.6 million in energy
costs
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Challenges

= Complex modeling

— GUI simulation models not often made oo water soure
to be run 1000s of times
BP Water treatment plant

— Node-link topology requires spatially
disaggregated input data —

\EM
Holly
" |ntegrated planning ek
— TRWD buys energy in advance, not -
directly linked to water issues 2 - \s\ .

— In water planning, providing reliability
often trumps efficiency or cost savings

2’ o3
2’ o3
-

(B85 Universty of Gotoract Joseph Kasprzyk and Rebecca Smith — Slide 24

Boulder



Future Research: Energy planning

= Open to new collaborations!

= Use a “screening” level energy planning model to determine candidate
portfolios of renewable technologies

= Optimize and evaluate portfolios using multiple objectives in addition to
cost, including [Trutnevyte and Strachan 2013]:
— Separate consideration of fixed and operating costs
— Maximizing total installed capacity or produced energy
— Explicit minimization of greenhouse gas emissions
— Integration with other sectors
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Thanks! Any questions?
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