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In the context of climate change, decision-making frameworks have to consider
a broad range of potential futures by exploring the space of uncertainties. In
this space of possible futures, selection rules of optimal policies can be based
on probabilities or degrees of belief, on the existence of multiple priors or can
be based on non-probabilistic criteria [Heal and Millner, 2013]. In this research,
we apply a set of selection rules to the results issued from a large number of
scenarios generated by an integrated assessment model. These scenarios capture
the uncertainties from the socio-economic drivers, the delay of action, the climate
system and the economic impacts from climate change.

Uncertainty representation and propagation In our framework, we de-
compose the integrated assessment in three components: the socio-economic
scenarios, the climate system (including the carbon cycle) and the impacts at
global levels. We use the best available knowledge to account for uncertainties in
each of this component. Baseline socio-economic scenarios are defined as linear
combinations of the Shared Socioeconomic reference Pathways and a delay of
the beginning of the policy action vary betweeen 2015 to 2030. The climate
model, SNEASY [Urban et al., 2010], is producing probabilistic temperature
projections, calibrated on the CMIP5 temperature’s spread using an inverse
Bayesian technique based on a Monte Carlo Markov Chain. Each vector of the
Markov chain represents a state of the climate system. Finally, we fit three
probabilistic damage functions from global impact cost estimates issued from the
literature: a “quadratic” function, an “exponential” and a “catastrophic” one.

Utility function The policy action is characterized by a carbon budget, which
is defined as the cumulative Kyoto greenhouse gases emissions over the 21st
century. We denote the carbon budget ¢ € C C R* and the states of the world
s € §. The total discounted utility function
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U(C;S):Zl-l-r [M(c,t;s) + I(c,t;9)],
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where the mitigation costs are M(c,t;s) and the economic impacts costs are
I(c,t; s) in period t. 7 is the discount rate.



The mitigation costs are computed by the WITCH integrated model [Bosetti
et al., 2006], by imposing a constraint on the cumulated emissions. The WITCH
model also computes the associated optimal emission pathways. These emis-
sions are sent to the SNEASY model which produces probabilistic temperature
projections. The economic impacts are produced subsequently.

Decision rules We apply several decision making frameworks in order to
select the best climate policies according to their respective criteria. First, we
apply the subjective expected utility framework [Savage, 1954]. In this framework,
the knowledge of the decision maker is represented as subjective probability
distributions over the possible states of the world. Then, as it is unlikely to
know the likelihood of the damage function shapes, we consider the mazxmin
expected utility framework which introduces the notion of multiple priors [Gilboa
and Schmeidler, 1989]. Each damage function function shape is a different prior.
We also apply the a-maxmin expected utility criterion [Ghirardato et al., 2004]
which is an extension of the precedent rule, introducing uncertainty aversion.
Within this rule, the lowest expected damage from climate change (maxmax)
is retain for each policy strategy as opposed to the highest expected damage
(maxmin), amongst the priors.

We also consider non-probabilistic approaches. First, the mazmin framework
[Wald, 1945] is looking for the best amongst the set of worst-case outcome of
each policy action. Secondly, the a-mazmin criterion from Arrow and Hurwicz
[1972] is also considered. Finally, we apply the minimaz regret criterion [Savage,
1951] which minimises the max regret corresponding to the difference between
the worst and the best outcome of each policy.

Results Preliminary results show a trade-off between mitigation costs and
damage costs (Figure 1). Low carbon budget policies, on the one hand, have
benefits or no impacts from climate change but may suffer high mitigation costs.
High carbon budget policies, on the other hand, have very low mitigation costs
but the risk of very high damage is not negligible, as the probability distribution
of the damage costs has a very long tail. The selected policy will be located in
between these two alternatives. The value of the utility discount rate, reflecting
the time preference of the decision maker, is then a key element, as the damages
from climate change will occur later in the century. Table 1 shows the results
using a discount rate of 2%. Generally, we observe that the level of abatement is
increasing with ambiguity aversion. However, when using a “quadratic” damage
function, there is the possibility of benefits from climate change at low warming
and, in this case, optimistic decision makers would select a lower carbon budget
than the pessimistic ones.

Conclusion A number of decision rules has been applied to the results coming
from a probabilistic integrated assessment model. The addition of probability
distributions within an integrated model helps to better represent the current
scientific knowledge. Using many decision rules, allows us to inform the decision
makers on the level of uncertainty they are facing but also on the level of
ambiguity in the available knowledge.



Decision rule Kyoto carbon budget [GtCO2zeq]

Maxmin 4167
Maxmax 3779
Minimax regret 5920
Expected Utility (EU) 6492
Maxmin EU 4684
Maxmax EU 5458

Table 1: Selection of Kyoto carbon budgets. Utility discount rate is 2%.

. Loss [% of GDP]

250 3000 7500 =
Kyoto GHG budget 20002100 [GICOzeq] Kyolo GHG budget 2000-2100 [GICO2eq]

(a) Maxmin and maxmax expected utility (b) Maxmin and maxmax criteria

Figure 1: Application of the decision rules over the utility values as a function
of the Kyoto carbon budget. Black points are the generated utility values.The
red lines are the search paths of each decision rule and the green points are the
best criterion values.
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