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Future energy targets are driving the deployment
of renewable technologies

London Array — the world’s largest A solar farm
offshore wind farm

Aquamarine Power’s Oyster Wave Energy

Photo credits: http://www.londonarray.com/media-centre/image-library/offshore,
http://www.solarselections.co.uk/blog/wp-content/uploads/2012/09/ROC-solar-farm.jpg
The future role for energy storage in the UK, Energy Research Partnership, 2011
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The intermittency challenge

Source: The future role for energy storage in the UK, Energy Research Partnership, 2011
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 Renewable energy is generated when it's not needed

« Large dip in generation during high demand

« Peaking generators, e.g. gas turbines, used to balance supply and
demand are expensive and produce GHG emissions



Imperial College 5!:3553 cccccccc
London wholeSEM

Energy storage solution

Photo credit: The future role for energy storage in the UK, Energy Research Partnership, 2011

Royal Institution Battery 1807

Llyn Stwlan reservoir Hot water storage tank in the
basement of a smart house

« Enables “wrong-time” energy generation from intermittent renewables
 Reduces need for peaking generators
* Improves energy use efficiency
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energy storage

Advanced lead-acid battery

Li-ion battery

Lead-acid battery

Nickel metal hydride battery

Flywheels
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100MW

1GW

Key: Types of ielr:[e[sl Hydrogen-related Electrochemical -

Source: Williams, R. Is liquid air the missing link in energy storage. Focus April 2013.

Modelling challenge: the dynamics of storage technologies occur over short
time scales (<hourly), very different from the time interval in energy system

planning models (>yearly)
Tractability is an issue!
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Challenges

* We need a dynamic energy system model with a very
wide range of time scales

* Planning: years or decades
* Seasonal: variations in demands and availability
* Hourly (or shorter):
* Dynamics of storage technologies
 Variations in demands, intermittency of renewable resources
* Still need to model spatial aspects
* Demands and availability depend on location
* Determine location/size of technologies and storage facilities

* Requires integer variables

* Transport of resources (centralised vs. distributed)

* Very large scale model
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Hydrogen Supply Chain (HSC) model
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Spatial element: Great Britain represented by 34 108x108 km2 square cells
Temporal element: 2015-2044 divided into 5 6-year periods

Last upgrade: made it a dynamic model with time intervals of 4 seasons in a year and
4 6-hr periods in a day
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Example case study

Summer 2015-2020

—p—— Rail transpaort

—p—— Truck transport . Mo. of prodection plants . Mo. of storage facilities

No. of variables > 1M, No. of constraints > 0.5M, Integers = 15k
Took ~3 days to solve full MIP!
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Inventory profile for a whole year

London and the South East (cell 29) in 2039-2044
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Limitations of the HSC model

* Multi-echelon model
* Pathways inflexible
* Distribution within cells too complex
* Too many binary variables
* Big M formulation

* Too large to be extended

* Adding a pipeline transport mode resulted in intractable
problems

* Difficult to add new technologies and resources
e Still not enough time intervals
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A very simple MILP model with storage

Resource balance: I, +U , + Zarp nch Z

Production capacity constraint: PIOCh <NP,p;” Vp,c,h
Resource availability constraint: U, <u

Storage capacity constraint: S, <si > Vr,c,h

Obijective function definition

max
rch

rc'ch rcc h - Drch = Srch o Src,h—l vr,c, h
A simple model is
vr,c,h intractable for the time

horizon needed for a

planning model!

=3 |p|=4 |c|=14 No. of integer variables = 56

h - contiguous hourly interval
No. of variables ;

No. of constraints | Solution time (s)

24
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720

2,160
8,760

6,139
42,427
181,531
544,411
2,207,611
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110,887 22,
332,647 >155

1,349,047

2
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STeMES

Spatio Temporal Model for Energy Systems

 RTN representation of energy pathways

* same framework as the BVCM and TURN model in SynCity
toolkit

 MILP formulation

* Efficient representation of time

* Detailed storage formulation

* Transport losses modelled in detail
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Hierarchical non-uniform time discretisation

Years I n 1,1' e —— - I | Y I

/ AS . A
S=1r A N\ T yyH

Seasons F | - == : -

T Ad o
5 \ d
Days . d=1 e : :
ah, e
Hows (M=l /e

Total number of time intervals T = |y| x [s| x |d| x |h|

e.g.foroneyear, T=1x4 x2x24 =192 <<8760

Without storage — very easy!

With storage — extra variables for initial inventories; extra constraints to link
inventories within and between time levels
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Transport task — used to model connections between cells
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Transport
r,

7

QO
L/

N

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Resource r, is transported from cell i to cell i’, which requires r, from cell
| and results in waste r, being generated in both cells
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Storage

An example set of storage tasks to store resource r;.

1 A
<
° e Hold Inventory
> >
£l
Get f——/

The “put” task transfers r, from the cell to the store, requiring some r, and producing some
wastes r; (e.g. CO,). The “hold” task maintains r, in storage, which also requires some r, but
at less than 100% efficiency, the losses being converted to r;. Finally, the “get” task retrieves
r, from storage and delivers it to the cell, requiring some r..

s
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STeMES prototype

Developed and tested for a hypothetical island of 14 50x50km cells
Wind generation installed at two locations

Choice of storage technologies

« Salt cavern available for use as hydrogen storage facility

« Other H, storage technologies: gaseous (tank), liquid, metal hydride

Target: transport demand to be met by hydrogen (CGH,)

Objective: Minimum cost

Decisions
. Location and size/number of hydrogen | I[tasmas

12 13

production and storage facilities o] u
* Operation of production facilities /.
« Operation of storage facilities Cavern Z T
« when to charge and discharge
- Transportation of hydrogen - > - y -
;;..
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Ave. daily demand for CGH, (MW)
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Results |y|=1, |s|=4, |d|=2, |h|=24

Snapshot of the network during
weekday (d=1) in spring (s=1)

= Hourly transport of CGH2 by pipeline
® Installed electrolyser capacity (3 small units)
B Installed underground storage capacity
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« Without storage, the scenario is infeasible
« BUT with storage, only a fraction of the available wind energy is needed!

Wind utilisation (MW)

Wind availability (MW)

Wind energy potential (MW)
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The rate of operation of
electrolyser is effectively constant

CGH, production rate (MW)
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London

1, |s|=4, |d]|=

Results |Y|

Hourly inventory of CGH, In the storage for a whole year
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Benchmarking
No. of integers = 336, relative tolerance = 0.1%
Run | |y| N || lal No. of No. of Solution
ID variables | constraints time (s)
a 1 1 1 24 32,823 98,631 7
b 1 1 2 24 64,959 196,911 272
C 1 2 2 24 129,399 393,639 2,543
d 1 4 2 24 258,279 787,095 69,480

» All runs determined 45.4 MW of electrolysis capacity installed in cells 1 and 14,

H, transport by pipeline and underground storage.

« However, the runs with fewer time intervals underestimated the storage capacity.

L5 -rmsemseseoennenenee i

n d - (4 season types)

Amountof CGH2 in the storage (GWh)
Amountof CGH2 in the storage (GWh)
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If underground storage is not an option

Iyi=1.Isl=1.Jd|= 2. |hj= 24

Demand (MW)
d=1 — 200 ... mcell m2m3m4m5m6m7mE MO MIOMIl WI2 W13 MI
S
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. - * Network is more distributed with small compressed

— gaseous H, storage technologies installed in cells
> Hourly ransport of CGH, by pipeline — —\\yare generation are located and cell the with highest
® Installed electrolyser capacity (3 small units)
Installed CGH,S capacity (1 small unit each) demand.
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Next steps

Real case studies (e.g. UK scenarios)
Current UK

energy storage

Add more resources and technologies Bk

Exploit the full potential of the non-
uniform hierarchical discretisation
method

* E.g. Use fewer non-uniform hourly
intervals

Additional decomposition methods
° Benders decompOSItlon d|d not wo rk Source: The Electricity Storage Network. Development of

electricity in the national interest. May 2014

* Test in-house approaches
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Conclusions

e Storage is a key-enabling technology for meeting the energy
demands using renewable resources
* Without storage the example problem is infeasible

* With storage, only a small fraction of available primary resource is used
and the generation technology operates effectively at a constant rate

* To model storage accurately, hourly or shorter intervals are
needed

* In the example, four seasons are also needed

 Model tractability is a big challenge
* Even the simplest model cannot handle a whole year at an hourly level

* Hierarchical time decomposition allows a whole year (and longer
planning horizon) to be considered by exploiting periodicity in the data



