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Developing in smart heating controls that 
understand thermal performance of homes
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Developing smart online strategies to store 
electricity in the form or hot or cold air
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The starting point for both applications are 
accurate thermal models of the building
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•  Heat	
  flows	
  from	
  heater	
  and	
  leakage	
  

•  Change	
  in	
  internal	
  temperature	
  

We build an explicit physical model of the 
thermal properties of a building
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thermal properties of a building
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We can use a range of algorithms to fit model 
parameters to real world observations
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With a predictive model we can control the 
heating system to mininise cost or carbon
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We can use a range of algorithms to fit model 
parameters to real world observations

•  Kalman	
  filter	
  
– Explicit	
  model	
  of	
  uncertainty	
  and	
  process	
  noise	
  

•  Latent	
  force	
  Gaussian	
  process	
  model	
  
– Combine	
  differenRal	
  equaRons	
  into	
  GP	
  framework	
  
– Model	
  latent	
  driving	
  force	
  

•  Failures	
  of	
  our	
  physical	
  model	
  
•  AddiRonal	
  heat	
  from	
  householder	
  acRvity	
  

– We	
  can	
  build	
  in	
  24	
  hour	
  periodicity	
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Latent force models minimise effect of 
additional driving forcing on parameters
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Latent force models minimise effect of 
additional driving forcing on parameters
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We evaluated these approaches on typical 
1930s homes owned by the University
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•  Sense	
  the	
  control	
  point	
  of	
  the	
  home	
  
– Can	
  provide	
  useful	
  energy	
  feedback	
  

•  Commercial	
  USB	
  loggers	
  difficult	
  to	
  use	
  
– Require	
  soYware	
  to	
  download	
  data	
  
– Poor	
  user	
  interface	
  

We explored the use of low-cost temperature 
loggers to collect data at scale
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Developed a customer low-cost temperature 
logger which was easier to configure and use
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Developed a customer low-cost temperature 
logger which was easier to configure and use
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Deployed Joulo as a trial service to over 750 
homes during January to March 2013
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Deployed Joulo as a trial service to over 750 
homes during January to March 2013
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Provide feedback on 
temperatures. 
 
Detect thermostat 
setpoint 
 
Compare to average 
Calculate energy 
saving on reduction 
to the average 

Deployed Joulo as a trial service to over 750 
homes during January to March 2013
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•  Leakage	
  is	
  proporRonal	
  to	
  the	
  difference	
  in	
  
temperature	
  (collected	
  from	
  the	
  internet)	
  

•  We	
  parameterize	
  the	
  operaRon	
  of	
  the	
  heaRng	
  
system	
  

•  Search	
  parameter	
  space	
  for	
  the	
  best	
  fit	
  

Used simple parameter search approach to 
build thermal model of the home

28	
  



Used simple parameter search approach to 
build thermal model of the home
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•  Use	
  seasonable	
  average	
  max	
  and	
  min	
  data	
  to	
  
generate	
  syntheRc	
  external	
  temperatures	
  

Calculated and provided feedback on energy 
savings achieved on changing setpoint
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Calculated and provided feedback on energy 
savings achieved on changing setpoint
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•  Real	
  comparison	
  of	
  saving	
  is	
  complicated	
  by	
  seasonal	
  
temperature	
  changes	
  and	
  long	
  term	
  nature	
  of	
  the	
  trial	
  	
  

Compared our approach to real data on two 
benchmark homes
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Joulo was used to collect baseline data for 
DECC Smart Heating Controls survey
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In September 2013 we won British Gas 
Connected Homes Start-up Competition
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In September 2013 we won British Gas 
Connected Homes Start-up Competition

Demo 
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Joulo Ltd was spun out of the University and 
acquired by Quby in January 2015
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Deploying multiple (200+) loggers in single 
buildings to understand overheating issues
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We are working with KiwiPower to deploy 
modelling approaches for demand response
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  Conclusions	
  

•  Machine	
  learning	
  and	
  inference	
  can	
  fill	
  in	
  some	
  
of	
  the	
  gaps	
  in	
  what	
  we	
  cannot	
  sense	
  directly	
  

•  Deploying	
  sensors	
  at	
  scale	
  requires	
  us	
  to	
  
minimise	
  installaRon	
  complexity	
  
– Mail-­‐out	
  self-­‐installaRon	
  kits	
  can	
  be	
  a	
  great	
  way	
  to	
  
generate	
  a	
  large	
  user	
  base	
  at	
  low	
  cost	
  

•  Low	
  cost	
  manufacturing	
  and	
  prototyping	
  
techniques	
  make	
  this	
  possible	
  within	
  research	
  
projects	
  

39	
  


