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Developing in smart heating controls that
understand thermal performance of homes
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Developing smart online strategies to store
electricity in the form or hot or cold air




The starting point for both applications are
accurate thermal models of the building
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TABLE 3.3 U-value calculation

U-values can be calculated using the following formula:
1

U=

Rg+Ray+Raz...Rin+R1+Re. . .Ry+ Reo
internal surface resistance (see Table 3.5)

where Rg
any airspace resistance (see Table 3.6)

@l
Ri2...n resistance of material layer 1, 2. . . n where resistance is
calculated by dividing thickness (L in metres)
by conductivity of material (A) (see Table 3.4)
Rqs = external surface resistance (see Table 3.5)
The calculation is most conveniently performed in a table torm
Element layer L A R
(m) (W/mK) (miK/W)
1. internal surface resistance R
2 listall materials and L=R e
4 | airspaces with A R
: appropriate thickness $
and A values R
: R
n+ 1 external surface resistance A
Sum of all resistances = 2R
U = 1 =  UWmK
>R
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We build an explicit physical model of the
thermal properties of a building

* Heat flows from heater and leakage
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We build an explicit physical model of the
thermal properties of a building
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We build an explicit physical model of the
thermal properties of a building
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We build an explicit physical model of the
thermal properties of a building
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We build an explicit physical model of the
thermal properties of a building

* Heat flows from heater and leakage
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We can use a range of algorithms to fit model
parameters to real world observations
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With a predictive model we can control the
heating system to mininise cost or carbon
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We can use a range of algorithms to fit model
parameters to real world observations

e Kalman filter
— Explicit model of uncertainty and process noise

e Latent force Gaussian process model
— Combine differential equations into GP framework

— Model latent driving force
* Failures of our physical model
* Additional heat from householder activity

— We can build in 24 hour periodicity
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Latent force models minimise effect of
additional driving forcing on parameters
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Latent force models minimise effect of
additional driving forcing on parameters

Reece, S., Roberts, S., Ghosh, S., Rogers, A. and
Jennings, N. R. (2014) Efficient state-space
inference of periodic latent force models. Journal
of Machine Learning Research, 1-66. (In Press).

Ghosh, S., Reece, S., Rogers, A., Roberts, S.,
Malibari, A. and Jennings, N. R. (2014) Modelling
the thermal dynamics of buildings: A latent force
model based approach. ACM Transactions on
Intelligent Systems and Technology, A:1-A:28. (In
Press).



We evaluated these approaches on typical
1930s homes owned by the University
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We explored the use of low-cost temperature
loggers to collect data at scale

* Sense the control point of the home
— Can provide useful energy feedback

« Commercial USB loggers difficult to use

— Require software to download data
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Developed a customer low-cost temperature
logger which was easier to configure and use

gger Utility

Temperature Lo
25.40

Default Value 160 | Calibration
76-f8-55-94 | Update
Battery Charging _Power Down _

Seconds per Flash 4 Set Sampling Parameters
Flashes per Sample ‘ 30 Set Current Time
Number of Samples '5_041 k Reset & Reformat Devi

Samples to Skip |30 ' Download Dataflash

Dataflash Download
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Developed a customer low-cost temperature
logger which was easier to configure and use
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Deployed Joulo as a trial service to over 750
homes during January to March 2013

e 00 MyJoulo - Home "
€A htps @ www.myjoulo.com

Order your free logger Upload your data Login to view your usage

Personalised energy advice in three simple steps

o 21 (o)
N

Order your free logger Record your data View your usage

® ® O,

Register for an account with us Place your Joulo logger on top of Upload the data from the logger
and we'll send you a free the thermostat in your home, here, and you'll receive
Joulo logger. and it will log the temperature personalised advice on how you
continuously for one week. can reduce your heating bill.

JOU'OBm about us data policy fags contactus follow us on twitter © 2013 myjoulo.com W Tweet  Like 33
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Deployed Joulo as a trial service to over 750
homes during January to March 2013
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Deployed Joulo as a trial service to over 750
homes during January to March 2013
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Deployed Joulo as a trial service to over 750
homes during January to March 2013
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Used simple parameter search approach to
build thermal model of the home

* Leakage is proportional to the difference in
temperature (collected from the internet)
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* We parameterize the operation of the heating

SyStem
9 — [Tp, ¢, Tset; S1,€1, 82, €2, m]

e Search parameter space for the best fit
g ™1 7 2
0 = arg meln; (Tznt o CZ-’log)
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Used simple parameter search approach to

build thermal model of the home
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Calculated and provided feedback on energy
savings achieved on changing setpoint

* Use seasonable average max and min data to
generate synthetic external temperatures
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Calculated and provided feedback on energy
savings achieved on changing setpoint

Thermostat Set-Point Reduction
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Compared our approach to real data on two
benchmark homes

* Real comparison of saving is complicated by seasonal
temperature changes and long term nature of the trial

Prediction Error 10 Energy Saving

Reduction (%)

Percentage Error (%)
O R N W P U1 O

Home 1 Home 2 Home 2 Estimate Actual
(21C) (19C)
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Joulo was used to collect baseline data for
DECC Smart Heating Controls survey
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In September 2013 we won British Gas
Connected Homes Start-up Competition
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In September 2013 we won British Gas
Connected Homes Start-up Competition

Demo
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Joulo Ltd was spun out of the University and
acquired by Quby in January 2015

2w 5 X Tl 11:30

Vergelijk

Op basis van 89 Toon-gebruikers met soortgelijk profiel

gemiddelde
7,3 kWh
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Deploying multiple (200+) loggers in single
buildings to understand overheating issues
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We are working with KiwiPower to deploy
modelling approaches for demand response
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Conclusions

 Machine learning and inference can fill in some
of the gaps in what we cannot sense directly

* Deploying sensors at scale requires us to
minimise installation complexity

— Mail-out self-installation kits can be a great way to
generate a large user base at low cost

* Low cost manufacturing and prototyping
techniques make this possible within research
projects
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