Thermal modelling of homes and buildings from minimal sensor deployments

Prof. Alex Rogers Electronics and Computer Science University of Southampton

Developing in smart heating controls that understand thermal performance of homes

Developing smart online strategies to store electricity in the form or hot or cold air

The starting point for both applications are accurate thermal models of the building

Heat flows from heater and leakage

$$\eta^t = \eta^t_{on} r_h - \phi \left(T^t_{in} - T^t_{ext} \right) + \epsilon^t$$

• Change in internal temperature

$$T_{in}^{t+1} = T_{in}^t + \frac{\eta^t \Delta t}{c_{air} m_{air}}$$

Heat flows from heater and leakage

$$\eta^{t} = \eta^{t}_{on} r_{h} - \phi \left(T^{t}_{in} - T^{t}_{ext} \right) + \epsilon^{t}$$

• Change in internal temperature

$$T_{in}^{t+1} = T_{in}^t + \frac{\eta^t \Delta t}{c_{air} m_{air}}$$

We can use a range of algorithms to fit model parameters to real world observations

With a predictive model we can control the heating system to mininise cost or carbon

We can use a range of algorithms to fit model parameters to real world observations

• Kalman filter

Explicit model of uncertainty and process noise

- Latent force Gaussian process model
 - Combine differential equations into GP framework
 - Model latent driving force
 - Failures of our physical model
 - Additional heat from householder activity
 - We can build in 24 hour periodicity

Latent force models minimise effect of additional driving forcing on parameters

Latent force models minimise effect of additional driving forcing on parameters

Reece, S., Roberts, S., Ghosh, S., Rogers, A. and Jennings, N. R. (2014) Efficient state-space inference of periodic latent force models. Journal of Machine Learning Research, 1-66. (In Press).

Ghosh, S., Reece, S., Rogers, A., Roberts, S., Malibari, A. and Jennings, N. R. (2014) **Modelling the thermal dynamics of buildings: A latent force model based approach**. ACM Transactions on Intelligent Systems and Technology, A:1-A:28. (In Press).

We evaluated these approaches on typical 1930s homes owned by the University

We explored the use of low-cost temperature loggers to collect data at scale

- Sense the control point of the home
 Can provide useful energy feedback
- Commercial USB loggers difficult to use
 - Require software to download data
 - Poor user interface

Temperature			
2		$\cap c$	•
L 2	J. 4		-
Time			
04/0	1/2013	13.24	.55
0470	1/2015	13.24	
Oscillator Calibration			Cellibration
Current Value 159	Default Valu	ue 160	Calibration
Serial Number			
Serial Number	76-f8-55-94	Update	
Battery			
Battery State	Battery Chargi	ng	Power Down
Controls			
Seconds per Flash	4	Set Sampling Parameters	
Flashes per Sample	30	Set Current Time	
Number of Samples	5,041	Reset & Reformat Device	
Samples to Skip	30	Download Dataflash	
Dataflash Download			

Provide feedback on temperatures.

Detect thermostat setpoint

Compare to average Calculate energy saving on reduction to the average

Used simple parameter search approach to build thermal model of the home

• Leakage is proportional to the difference in temperature (collected from the internet)

$$\hat{T}_{int}^{i+1} = \hat{T}_{int}^{i} + \left[r_p \times \frac{r_h^i}{r_h} - \phi \left(\hat{T}_{in}^i - T_{ext}^i \right) \right] \Delta t + \epsilon^i$$

• We parameterize the operation of the heating system

$$\boldsymbol{\theta} = [r_p, \phi, T_{set}, s_1, e_1, s_2, e_2, m]$$

• Search parameter space for the best fit

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^n \left(\hat{T}_{int}^i - T_{log}^i \right)^2$$

Used simple parameter search approach to build thermal model of the home

Calculated and provided feedback on energy savings achieved on changing setpoint

Use seasonable average max and min data to generate synthetic external temperatures

Calculated and provided feedback on energy savings achieved on changing setpoint

Compared our approach to real data on two benchmark homes

 Real comparison of saving is complicated by seasonal temperature changes and long term nature of the trial

Joulo was used to collect baseline data for DECC Smart Heating Controls survey

In September 2013 we won British Gas Connected Homes Start-up Competition

In September 2013 we won British Gas Connected Homes Start-up Competition

Joulo Ltd was spun out of the University and acquired by Quby in January 2015

Deploying multiple (200+) loggers in single buildings to understand overheating issues

We are working with KiwiPower to deploy modelling approaches for demand response

Conclusions

- Machine learning and inference can fill in some of the gaps in what we cannot sense directly
- Deploying sensors at scale requires us to minimise installation complexity
 - Mail-out self-installation kits can be a great way to generate a large user base at low cost
- Low cost manufacturing and prototyping techniques make this possible within research projects