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Power systems and meteorology 3 Reading

* Many impacts of weather on power (damage, demand, transmission, supply)
* Use of renewables: Increasing sensitivity to weather on generation side
e Climate variability and change: Changing weather

Operational . Day to day operations (e.g., grid management, plant sched)
(seconds —few days) . Anticipating extreme weather
) . Longer-term wholesale energy contracts
Trading . Maintenance planning

(days —1 year) . Medium term resource planning

Strategic . Characterising demand/supply
(long term climate) . Impacts of climate change

Extremes . Risk and impact of extreme disruptive weather
(disrupting weather) . Local and far-field

* Key challenge: how to use weather/climate data effectively to understand behaviour of
impacted system and develop risk management strategies

e Today: three examples — operational, strategic and, if time permits, trading
* Power-, Euro-, Renewables- centric (please ask about other areas!) 2
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Types of climate information < Reading

* Type 1 — climatologies of risk: understanding range of the possible (blue = red)
* Reanalysis
e Climate model projections (GCMs)

* Type 2 — forecasting risk: anticipating outcomes (red = green)
* Ensemble prediction (subseasonal, seasonal and decadal)
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Climatologies of risk & Reading

* Wind-power variability
e Reserve holding, system planning, system management
* Risks: persistent-high, persistent-low and rapid ramps in wind power

Example 1: Can historical meteorological data better characterize these three
risks? (now and into the future)

Climate impacts on “integrated” power systems
* Load duration and operating opportunity for conventional plant

Example 2: Are economic “system planning” models robust to climate variations?

National-aggregate



Wind power climatologies G e

(Cannon et al, 2015; Drew et al 2015; Canon et al, accepted MetZet) Seatins

 |Insufficient direct power observation records (few years)

* Previous work largely based on met-station data (Sinden, Leahy, Earl, Fruh, ...)
 Spatially sparse, inhomogenous (spatial, temporal)
e Wrong height (10m), wrong location (relative to wind farms)
e = Conversion to “power” problematic

e Reanalysis
 Full, gridded, homogenous coverage
* Greater homogeneity, multiple vertical heights
* Freely available, no need for additional simulations
* NASA MERRA (Reinecker et al 2011); similar results with ERA-Interim (Dee et al, 2011)

* See also excellent recent work by Ed Sharp, lain Staffell, Stefan Pfenninger, Lucy Cradden
and others



Conversion to wind power % Reading

* Interpolate hourly wind-speed to each site in 2012 wind-farm list (2, 10, 50m)
* Extrapolate to turbine height using a fitted logarithmic profile

* Applying simple power curve to estimate capacity factor

* Weight by local installed capacity and aggregate nationally

e Calibrate power curve using observed 2012 wind-power records

(a) September 2012 wind farm distribution
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Wind power — 2012 period < Reading
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Aside: The limits of reanalysis <7 Reading

GB wind strongly spatially correlated, decreasing with distance ~100’s km (Sinden, 2007)
Question: how well does MERRA capture differences between sites?

(a) Correlation (U, 61)
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Correlation ~0.6 @ 300 km

Interpretation:

» dU contains contribution from “local situation” and “large-scale weather”

« MERRA captures the contribution from “large-scale” but “local” is unresolved

o Effective resolution on scale ~ 300km

Cannon et al (2015) 8



Wind power synthetic record ez e

(Cannon et al, 2015, Renewable Energy) < Reading

30+ year “synthetic history” of wind power
* Model and data freely available: www.met.reading.ac.uk/~energymet

Key points:

* Better quantification of risks associated with inter-annual climate variability

* Annual-mean capacity factor higher than previous estimates (32.5%) but highly variable (15pp range)
* Persistent high/low wind events approximately Poisson-like (exponential decay with persistence)

* Very large ramps can occur — but caution required
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http://www.met.reading.ac.uk/%7Eenergymet

Future wind power installation e e

(Drew et al, 2015, Resources)

Readlng

* “What if” scenarios: characteristics of future power systems

* |dentify contributions from offshore/onshore

2015

Drew et al (2015)

“Future” = Round 3 +
all onshore _

Capacity (Hl/)

T : 4000

3000

2000

1000

500

200

Annual mean CF

Hourly CF

Red = “future”

50

40

5
]

45 m...”..;.....”'...”...j”....”.;..”...ﬂ....”..;.”...”

.y Blue =present

o0

i i L 1 1
1385 1930 1935 2000 2005 2010 2015

Y&4r

0,08} ...... ....... ....... ....... ........ F u,t.u.r.e .....

Interannual

100 10

Hourly CF



Future wind power installation ] Universty o

(Drew et al, 2015, Resources)

* Fewer persistent low CF events = much fewer in terms of GW output
e More persistent high CF events 2 much more in terms of GW output
e Ramps same size in CF terms = larger ramp in GW

Capacity factor < 10%

Capacity factor > 80%

Events per year

0 20 40 B0 80 100 (O 20 40 EO0 80 100
Persistence (hours) Persistence (hours)

Solid lines = present
Dotted = future

Drew et al (2015) Shading = 1 std. dev.

=» Reading
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Integrated power systems s3] niversiyo

=» Reading

(mainly work by Hannah Bloomfield, PhD student)

* Integration of renewables: more sensitive to weather
* ... but climate impact work usually considers “ingredients”, not power “systems”
* Perspective: two particular “classes” of problem

Short run Long run
Operation of a “fixed” power system Design of “best” power system
E.g., unit commitment, power flow, loss of E.g., capacity mix, policy choices,
load probability economic optimality

Both challenging, both important, both focus of much energy-system research

Highly complex, often drawing on numerical simulation (typically optimisation-based)

However, many influential studies use short weather/climate records, e.g. (for long-run):

e Grunewald 2011; Poyry 2009; Green 2010; Gerber 2012; Widen 2011; Buttler 2016;
Schaber 2013; Macdonald (in press); EWITS, WWSIS

e Question: How robust are the results to long-term climate variability? 12



Integrated power systems s3] niversiyo

=» Reading

(work by Hannah Bloomfield, PhD student)

Simplified approach, based on “merit-order” principles

Enables approximation of economic decision-making in power sector

Intention to explore how climate information can/should be used...

... not to replace “more complex” power models, or to produce precise predictions

Cost Long run Bid A 1 Short run
Price Demand
Supply
' > >

% 91%  puration (hiyr) \% Volume
Type Capital cost Operating cost Example
Peaking Low High OCGT, all See, e.g., Stoft (2002)
Mid-merit Medium Medium CCGT, coal 7% and 91% thresholds

Baseload High Low Rl based on DECC 2013 13
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“Model” concept < Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
e Self-consistent weather impact scenarios from reanalysis

Reanalysis (MERRA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 14



“Model” concept & Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
 Self-consistent weather impact scenarios from reanalysis or climate model

Reanalysis

Nﬂlibration

Climate model (e.g., HIGEM, CMIP, PRIMAVERA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 15



Wind power scenarios/model S Reading

e Constructed as previously, but using four different capacity scenarios:

Scenario WP capacity Distribution Interpretation
NOWIND 0 GW No use of wind power
LOW 15 GW 2012 Present day (2015)
MED 30 GW 2012 National Grid GG 2025
HIGH 45 GW Future (Rd3)  National Grid GG 2035

“Future” = Round 3 +
all onshore

Capacity (HlJ)
4000

T % - National Grid Future Energy
N Scenarios “Gone Green” (2015)
Note: interpretive comparisons
o indicate approximate
b consistencies, not precise

8% 8% 4% 2% oo 2% 4 8% &% 4% 2% ° 2%E 4% 16

Bloomfield et al, Nature Energy (submitted) definitions




Demand model <+ Reading

Three step approach:
1. Daily demand: multiple linear regression on temperature, c.f. Taylor & Buizza (2003)
* Trained on recorded national demand 2006-2010; good fit R ~ 0.93

Demand(t) = oq+ o(r)+ casin(wt) + agcos(wt) + asTe(r) + asTe?(t)

8 12
+ z (I;CWE(f) + z (IjWD(f) + (I]3HOL{I)
k=T =9

1. Simplify demand: remove “special days” with no meteorological significance

Demand = o + azsin(@t) + agcos(wt) + asT (1) + asT>(t)

=
o

1. Simplified hourly demand:
* “Downscaling” using observed diurnal curves
* One curve per season

Demand Anomaly (GW)
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|
—
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—
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Bloomfield et al, Nature Energy (submitted) ’ E 10 20

Hour of the Day
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“Model” concept < Reading

* Consider a one-zone (copper plate) model of the GB power system
* No transmission constraints, interconnectors, storage or ramping constraints
e Self-consistent weather impact scenarios from reanalysis

Reanalysis (MERRA)

—

Wind power Demand

Load = Demand — Wind Power

Bloomfield et al, Nature Energy (submitted) 18



Power system “model” concept v University of

Bloomfield et al, Nature Energy (submitted) ¥ Reading

* Result:
e 4 x 36 year scenarios (NO-WIND, LOW, MED, HIGH); hourly resolution
* Convenient to display as annual load duration curves (= 36 LDCs per scenario)
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Power system metrics 27 Universtyof

Bloomfield et al, Nature Energy (submitted)

=» Reading

* Assume “load” must be met by schedulable plant (either peaking, mid-merit, or baseload)

* Six power system “impact metrics” defined

Total annual energy required

Peak load

Curtailed wind energy

Threshold of economic opportunity for 7% peaking plant (or volume of energy opportunity)
Threshold of economic opportunity for 91% baseload plant (or volume of energy opportunity)
Annual operating hours of 30GW marginal mid-merit plant
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Mid-merit operating hours o University o

Bloomfield et al, Nature Energy (submitted) ¥ Reading

Perspective: “Short run” problem
e Substantial decrease in number of hours where load exceeds 30GW (from ~73% to ~50%)
 Also: increase in the year-to-year range

e Doubling from ~10pp (750h/yr) to ~20pp (1350h/yr)

 Significantly increased impact of climate on the operation opportunity
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Baseload threshold of opportunity o University o

Bloomfield et al, Nature Energy (submitted) ¥ Reading

Perspective: “Long run” problem - optimal amount of “baseload type” plant capacity
* Mean decreases dramatically = less opportunity for this type of generation
* Inter-annual range significantly increases = more climate uncertainty

- Estimates of the economically “optimal” opportunity for baseload which are reliant on short-data may
be significantly in error:

* Recall many studies use between 1 and 10 years of data
* 50% error in the change in optimal capacity for single year; 15% error for 10-year
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Climate drive rS (58] Universi.tyof

=» Reading

(Hannah Bloomfield, PhD thesis in prep)

* Exploration of what causes climate impacts (work in progress)
* Meteorological drivers sensitive to construction of power system
e See also Brayshaw, Dent and Zachary (2012) for wind-during-peak-demand
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Climate change S Reading

* Growing number of studies addressing climate RCP8.5 late C21 ENS mean
change on energy systems Change in wind power potential

* General consensus for wind:
e Changes are “fairly small”

* Increases in N. Europe
* Decreases in S. Europe

Tobin et al (2016)

Significant differences between models

Differences between studies — even using
same model archive!

* See, e.g., Bonjean-Stanton et al (2016) for a
recent review across many technologies

Reyes et al (2016)

24
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A note on climate change... e

* Understanding the meteorological drivers is important...
e ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”
RCP8.5-HIST Track density DJF

Ensemble mean

Figures: Zappa et al 2013 ?



A note on climate change... e

* Understanding the meteorological drivers is important...
e ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”
RCP8.5-HIST Track density DJF

Ensemble mean

“Climate model bias”
HIST-ERAInt Ensemble mean

Figures: Zappa et al 2013 2



A note on climate change... e

* Understanding the meteorological drivers is important...
e ... forced regional climate change signals can be quite uncertain (note: colour scales!)

“Climate response”
RCP8.5-HIST Track density DJF

Ensemble mean

“Climate model bias”
HIST-ERAInt Ensemble mean

f*‘

Figures: Zappa et al 2013
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Types of climate information < Reading

* Type 1 — climatologies of risk: understanding range of the possible (blue = red)

Reanalysis

e Climate model projections (GCMs)
* Type 2 — forecasting risk: anticipating outcomes (red 2 green)
* Ensemble prediction (subseasonal, seasonal and decadal)

Probability

o

0 Outcome value

Probability

A

0 Outcome value
28



Subseasonal and seasonal s oo

Readlng

forecasting

e Winter Windspeed

Ensemble forecasts

3 weeks — 4 months

Skill at large scales (space & time)

Inherently probabilistic

3-month averag-e skill in wmter wind speed in Met Office
seasonal forecast
Scaife et al 2014

Country-average weekly-mean forecast skill for
Temperature, wind and solar
Suckllng (unpublished)

Cloud cover

ECMWEF ensemble forecast
UK-average 7-day mean 10m windspeed
Lynch et al (2014)
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Using climate forecasts 27 Universtyof

=» Reading

(Lynch et al 2014, Lynch PhD thesis 2016)

* Similar issues to short-range but often
more challenging (calibration etc)

Week 3 - Week 4 |

* Acting on probabilistic information

Cumilative return
against climatology (%)

Ensemble weather 40-
forecast wl e S
l \ 0k Evaluation
Jan l 1—I -1: T - I201;
Wind Temperature Yearl Year2 Year3 Year 5
Wind power Demand Optimize trading

strategy
\/ Lynch et al

Power model (stack; EnKF) (thesis submitted)
| \ | |

70

~- Weeklv pri \ Ensemble price * |

= | eekly price forecast A Weekly price 3-week ahead forecast:

% | {\ ‘ ACC 0.53; CRPS 0.15 (99% confidence)

g - AWV . i\ RN ’ " y ..‘\i_ . . .

3 \ wh b M It is likely possible

Q- " to extract more skill

35 Jan—‘2011 ‘ 1 I 30
Jan 2012 Jan 2013 Jan 2014



Summary 5 Rt

* Weather and climate risk matters for energy applications
 Climate variability and change (years-to-decades) produces significant uncertainty
* Impacts all parts of the power system, not just renewables
¢ Influence on both “short-run” (fixed system) and “long-run” (investment/planning) perspectives
* Has not been adequately addressed in many previous studies: CIPSMIP?

* Opportunties to better manage the risks... but need for interdisciplinary collaboration
* Reanalysis and GCMs are powerful tools: but must be used appropriately
» Climate drivers need to be understood: does dataset/model include the relevant processes?
* Sub-seasonal, seasonal and decadal forecast systems: need to integrate with decision-making

_ Single variable _ _
Simple Single timestep Wind at a site
Single location

. Multi-variable
Complicated Multi-timestep
Multi-location

Demand net
renewables

Impact complexity
<€




Citations and upcoming S Reading

Major projects ongoing:

e ECEM climate services for energy | Recruitin ] - | |
¢ PRIMAVERA climate-energy impacts €= | ecruiling postaoc now:

Contact:
* Website (models and data): www.met.reading.ac.uk/~energymet

e Email: d.j.brayshaw@reading.ac.uk
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* Bloomfield et al (submitted) Quantifying the increasing sensitivity of power systems to climate variability. Nature
Energy.

e Cannon, D.J. et al (2015) Using reanalysis data to quantify extreme wind power generation statistics : a 33 year case
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* Ely, C.R. et al (2013) Implications of the North Atlantic Oscillation for a UK—Norway renewable power system. Energy
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* Brayshaw, D.J. et al (2012) Wind generation's contribution to supporting peak electricity demand: meteorological
insights. Journal of Risk and Reliability, 226 (1). pp. 44-50.

e Brayshaw, D. J. et al (2011) The impact of large scale atmospheric circulation patterns on wind power generation and
its potential predictability: a case study over the UK. Renewable Energy, 36 (8). pp. 2087-2096.
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