Introduction Simple example under Certainty Adding Uncertainty Next Steps

LONG-TERM ENERGY INVESTMENT, UNCERTAINTY, AND THE ROLE OF POLICY COMMITMENT

Jan Imhof and Florian Habermacher

Aurora Energy Research Ltd

05.07.2016

LARGE INFRASTRUCTURE INVESTMENTS AND POLITICAL UNCERTAINTY

- In Europe, a large share of the existing power plants will have to be replaced in the near future
- Large power infrastructure projects have high capital cost and long planning horizons
- Future policy is highly uncertain
- This combination makes large energy infrastructure projects unattractive for investors

HIGH UNCERTAINTY SURROUNDING ENVIRONMENTAL POLICIES

- Political debate about carbon taxes for two decades now
- EU ETS price low, MSR will help?
- UK carbon floor under pressure?
- Capacity market mechanism changes?
- Nuclear phase outs? Nuclear built out?
- Feed in tariffs for new renewables will decline?

How does Uncertainty about Future Carbon Prices affect Investment Behavior?

- How high will the carbon price be?
- When will the carbon price be implemented?
- Will there be subsidies for new renewables?
- Will there be a nuclear phase out?

MIGHT THIS LEAD TO A SUBOPTIMAL INFRASTRUCTURE?

- Renewables or Nuclear being built too late and too small scale?
- Coal plants being used too long?
- Will this lead to expensive technologies like gas that can be built quickly?
- Will this have detrimental effects on CO₂ emissions?
- How will this affect the cost of the power system?

SCENARIOS

- Introduce a carbon tax in 2020.
- Carbon tax is either 0, 5 or 10.

A SIMPLE MODEL WITHOUT UNCERTAINTY

$$\begin{aligned} \min \mathsf{COST} &= \sum_t \beta^t \left(\sum_j \left(\mathsf{mc}_j + \mathsf{co2}_j \cdot \tau_t \right) \cdot \mathsf{G}_{j,t} + \mathsf{kc}_j \cdot \mathsf{K}_{j,t} \right) \\ \mathsf{s.t.} \quad &\sum_j \mathsf{G}_{j,t} = \mathsf{d}_t \quad \forall t \\ \mathsf{G}_{j,t} &\leq \mathsf{K}_{j,t} \quad \forall j, t \\ \mathsf{K}_{j,t+1} &\leq \gamma_j + \mathsf{K}_{j,t} \quad \forall j, t \\ \mathsf{K}_{j,t+1} &\geq (1 - \delta_j) \cdot \mathsf{K}_{j,t} \quad \forall j, t \\ \mathsf{given} \quad &\mathsf{K}_{j,0}, \mathsf{d}_t \end{aligned}$$

DATA

	<i>K</i> ₀	mc	kc	γ	co2	δ
dirty	78	1	2	10	1	0.4
clean	22	1	4	10	0	0.1

TABLE: Technology characteristics

Demand	100, increasing by 2% per annum
β	0.95
au	0, 5 or 10

TABLE: Other parameters

GENERATION UNDER NO TAX

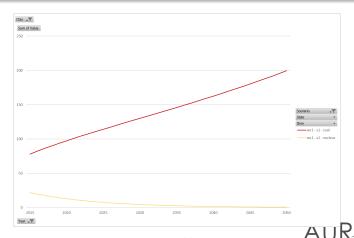


FIGURE: No tax

GENERATION UNDER TAX

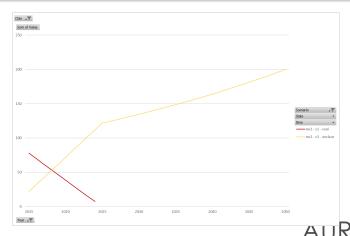


FIGURE: Tax of 5

Cost

	au = 0	au = 5	au= 10
Total	8.9	14.0 (+58%)	14.4 (+62%)
Capital	6.0	10.8 (+54%)	10.8 (+54%)
Variable	2.9	2.9 (0%)	2.9 (0%)
Tax		0.4 (+4%)	0.8 (+8%)

TABLE: Cost of a certain tax (Percentage of total cost change in parentheses)

SCENARIOS

- Introduce a carbon tax in 2020
- Carbon tax is either 5 or 10.
- Carbon tax is introduced with a probability of 50%

ADDING UNCERTAINTY TO THE SIMPLE MODEL

$$\begin{aligned} \min E[COST] &= \sum_{s} \pi_{s} \sum_{t} \beta^{t} \Big(\sum_{j} \big(\textit{mc}_{j} + \textit{co2fact}_{j} \cdot \textit{ctax}_{t,s} \big) \cdot \textit{G}_{j,t,s} \\ &+ \textit{kc}_{j} \cdot \textit{K}_{j,t,s} \Big) \\ \text{s.t.} \quad \sum_{j} \textit{G}_{j,t,s} &= \textit{d}_{t} \quad \forall t, s \\ \textit{G}_{j,t,s} &\leq \textit{K}_{j,t,s} \quad \forall j, t, s \\ \textit{K}_{j,t+1,s} &\leq \gamma_{j} + \textit{K}_{j,t,s} \quad \forall j, t, s \\ \textit{K}_{j,t+1,s} &\geq (1 - \delta_{j}) \cdot \textit{K}_{j,t,s} \quad \forall j, t, s \\ \textit{K}_{j,t,s} &= \textit{K}_{j,t,1}, \qquad \textit{G}_{j,t,s} &= \textit{G}_{j,t,1} \quad t \leq 2020, \text{proper} \\ \textit{given} \quad \textit{K}_{j,0,s}, \textit{d}_{t} \end{aligned}$$

4 D F 4 B F 4 B F

GENERATION UNDER UNCERTAINTY

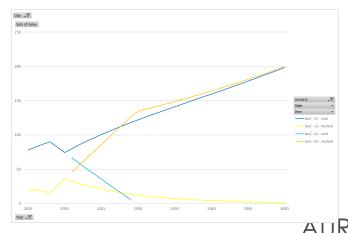


FIGURE: Tax of 5

GENERATION UNDER UNCERTAINTY

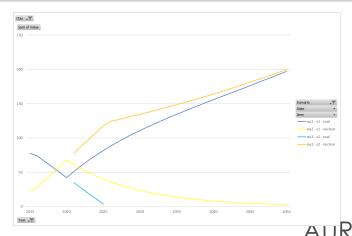


FIGURE: Tax of 10

Cost

	Certainty	$\tau = 5$	au= 10
Total	8.9	10.4 (+17%)	11.1 (+25%)
Capital	6.0	7.5 (+17%)	8.2 (+25%)
Variable	2.9	2.9 (0%)	2.9 (0%)
Tax			

TABLE: Cost without tax (Percentage of total cost change in parentheses)

Cost

	Certainty	$\tau = 5$	Certainty	au= 10
Total	14.0	14.3 (+2%)	14.4	14.4 (+0%)
Capital	10.8	10.5 (-2%)	10.8	10.9 (+1%)
Variable	2.9	2.9 (0%)	2.9	2.9 (+0%)
Tax	0.4	1.0 (+4%)	0.8	0.6 (-1%)

TABLE: Cost with tax (Percentage of total cost change in parentheses)

NEXT STEPS

- Apply to large scale model
- Calibrate to UK data
- Load curves / dispatch with more technologies
- Capacity addition with time lag
- Different layers of uncertainty:
 - Different CO2 prices
 - Timing of CO2 price introduction
 - Other uncertainties: Technology, Demand

DIRTY GENERATION

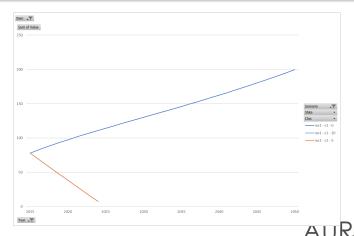


FIGURE: Dirty Generation

CLEAN GENERATION

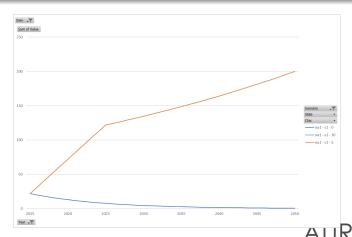


FIGURE: Clean Generation

DIRTY GENERATION

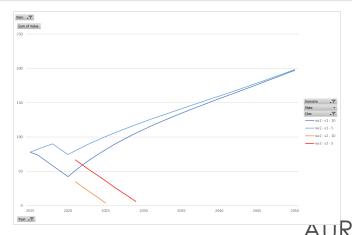
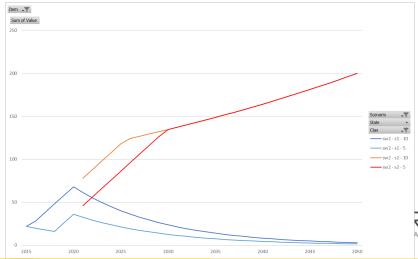



FIGURE: Dirty Generation

CLEAN GENERATION

