

Mitigation policy cost and Uncertainty

V. Bosetti, **L. Drouet**, M. Tavoni July 5, 2016

WholeSEM 2016

The Møller Centre – Churchill College *Cambridge*, 5 July 2016

Motivation

Uncertainty and climate change

- Uncertainty about the response of the climate system and its consequences on the natural and human processes is wide.
- The cost of climate mitigation is presumed to be known with greater confidence

Motivation

Uncertainty and climate change

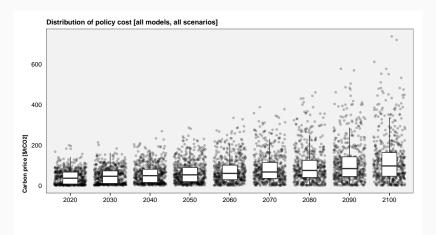
- Uncertainty about the response of the climate system and its consequences on the natural and human processes is wide.
- The cost of climate mitigation is presumed to be known with greater confidence

But mitigation costs are also uncertain

- Uncertainty of mitigation costs is wide and is increasing over time (Lemoine & McJeon, 2013; Drouet et al., 2015).
- This has an important implication when taking decision under uncertainty:
- > Stringent policy implies a risk of a very costly mitigation.

Current knowledge on mitigation costs

IPCC AR5 scenario database


- created for the IAMC and is hosted by IIASA
- model outcomes reviewed by the AR5 WGIII of IPCC
- publicly available at

```
https://secure.iiasa.ac.at/web-apps/ene/AR5DB
```

Dataset description

- 25'000 mitigation costs
- 9 model intercomparison projects
- time range: 2020–2100 (every 10 year)
- model versions [19]
- scenarios [157]

IPCC AR5 mitigation costs

Research question

What are the main drivers of uncertainty of our current knowledge of the climate change mitigation costs?

We identified 4 major components to explain the mitigation cost variations:

Climate target (Forcing in 2100) — 5 classes

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) — 6 classes

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) — 6 classes
- Model 12 models

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) — 6 classes
- Model 12 models
- Baseline (socio-economic pathway)

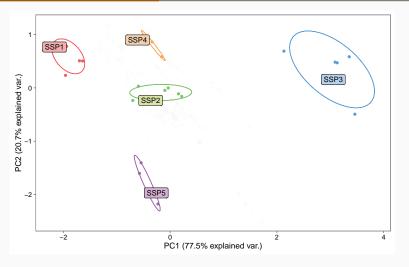
We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) — 6 classes
- Model 12 models
- Baseline (socio-economic pathway)

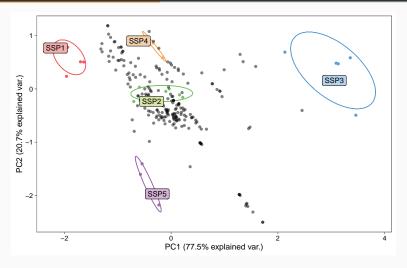
Note

By construction, these components are not fully independent.

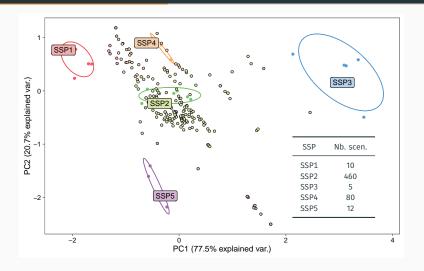
Baseline


Socio-economic pathways

The Shared Socio-economic Pathways (SSP)


- The 5 narratives have been recently quantified by 6 models (Riahi et al., 2016) and collected into the SSP database.
- We characterize the AR5 baseline scenarios with this new dataset.

SSP attribution


PCA on SSP reference scenarios using cumulative emissions, carbon intensity, energy intensity at world and region levels.

SSP attribution

Projection of the AR5 baseline scenarios: most of them are close to the SSP2 and SSP4 clusters.

SSP attribution

Association of the AR5 scenarios to the SSPs.

Correlation ratio

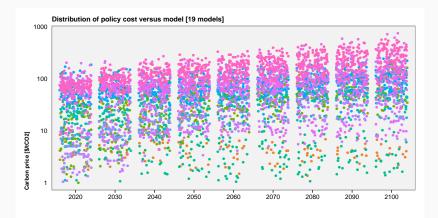
Correlation ratio

How much of the variations in Y (mitigation cost) can be explained by the variations in a driver X_i , where $Y = Y(X_1, X_2, ..., X_n)$?

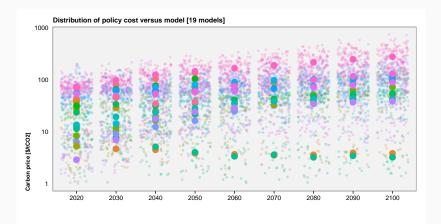
Correlation ratio η^2 (Pearson, 1926)

$$\eta^{2}(Y|X_{i}) = \frac{Var(E[Y|X_{i}])}{Var(Y)}$$

Based on the law of total variance, the correlation ratio does not require that the variables are independent or identically distributed.

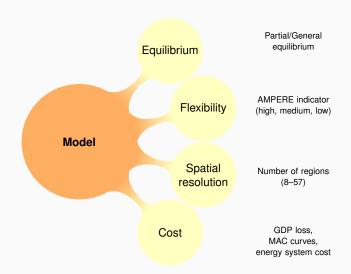

Law of total variance: $Var(Y) = E(Var[Y|X_i]) + Var(E[Y|X_i])$

Uncertainty decomposition — Main components

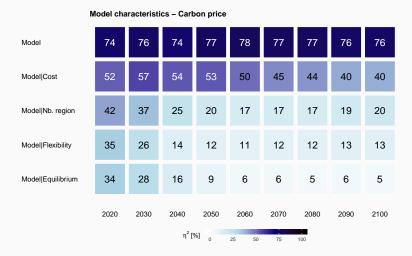


Correlation ratio for mitigation costs expressed in \$/tCO2

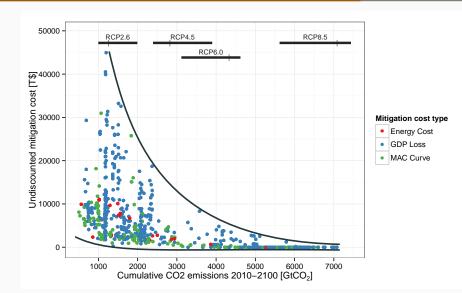
Uncertainty decomposition – Model

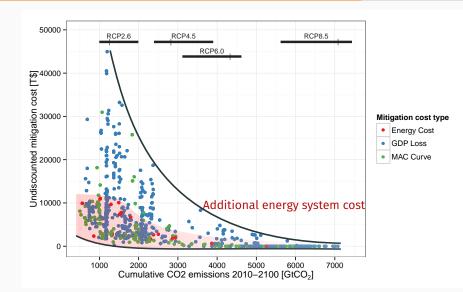


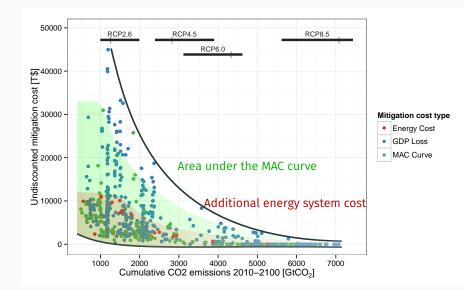
Uncertainty decomposition – Model

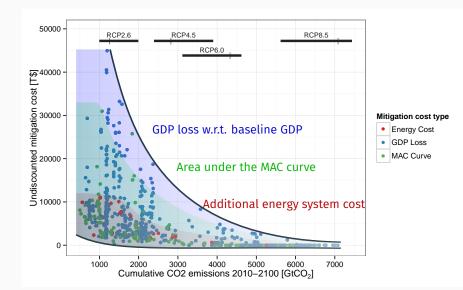


Model


Model characteristics




Uncertainty decomposition — Model characteristics



Correlation ratio for mitigation costs expressed in \$/tCO2

Conclusions

Summary

- Mitigation costs are also uncertain.
- "Model" is the most important component to explain the variation of the mitigation costs reviewed by the IPCC AR5.
- "Baseline" component is not important.

Recommendations for future assessments

- The use of models of different nature is primordial.
- More baseline (SSP), but mitigation costs are harder to compare (Drouet and Emmerling, 2016).
- 1.5°C?

Thanks

email: laurent.drouet@feem.it

Uncertainty decomposition — Main components

Main components									
Model	74 (1)	76 (1)	74 (1)	77 (1)	78 (1)	77 (1)	77 (1)	76 (1)	76 (1)
	64 – 78	72 – 79	68 – 77	69 – 80	69 – 82	68 – 81	68 – 82	66 – 80	66 – 80
Policy implementation	5 (0)	4 (0)	5 (0)	6 (0)	7 (0)	7 (0)	8 (0)	9 (0)	9 (0)
	4 – 7	3 – 6	5 – 7	6 – 9	6 – 10	6 – 11	7 – 12	7 – 13	8 – 13
Climate category	1 (0)	1 (0)	3 (0)	4 (0)	5 (0)	6 (0)	7 (0)	10 (0)	10 (0)
	0 – 2	0 – 2	2 – 5	3 – 6	3 – 8	4 – 10	5 – 11	8 – 12	9 – 13
Baseline	3 (0)	3 (0)	5 (0)	5 (0)	5 (1)	6 (1)	6 (1)	5 (1)	5 (1)
	2 - 4	2 – 5	3 – 7	3 – 9	3 – 11	3 – 14	3 – 14	3 – 14	3 – 13
	2020	2030	2040	2050	2060	2070	2080	2090	2100
η² [%] 25 50 75 100									

Correlation ratio for mitigation costs expressed in \$/tCO2, standard deviation and min-max range in a jackknife resampling.

Uncertainty decomposition — Model characteristics

Model characteristics 76 (1) 74 (1) 76 (1) 74 (1) 77 (1) 78 (1) 77 (1) 76 (1) Model 64 - 7872 - 7968 - 7769 - 8069 - 8268 - 8168 - 8266 - 8066 - 8050 (2) 45 (2) 44 (2) 40 (2) 40 (2) Model|Cost 46 - 6551 - 6947 - 6743 - 67 37 - 6533 - 6230 - 6129 - 5828 - 5742 (2) 37 (2) 25 (2) 20 (2) 17 (2) 17 (2) 17 (2) 19 (2) 20 (2) ModelINb, region 24 - 5423 - 5218 - 4113 - 3410 - 3210 - 3210 - 3412 - 3613 - 3835 (3) 26 (3) 14 (3) 12 (3) 11 (4) 12 (4) 12 (4) 13 (3) 13 (3) ModellFlexibility 4 - 48 3 - 403 - 332 - 412 - 453 - 422 - 44 3 - 423 - 4234 (2) 28 (2) 16 (2) 9 (2) 6 (1) 6 (1) 5 (1) 6 (1) 5 (1) ModellEquilibrium 23 - 4619 - 428 - 32 3 - 251 - 201 - 170 - 151 - 150 - 152040 2050 2070 2020 2030 2060 2080 2090 2100

Correlation ratio for mitigation costs expressed in \$/tCO2, standard deviation and min-max range in a jackknife resampling.

 η^2 [%]

50 75 100