Mitigation policy cost and Uncertainty

V. Bosetti, L. Drouet, M. Tavoni

July 5, 2016
WholeSEM 2016
The Møller Centre - Churchill College
Cambridge, 5 July 2016

Motivation

Uncertainty and climate change

- Uncertainty about the response of the climate system and its consequences on the natural and human processes is wide.
- The cost of climate mitigation is presumed to be known with greater confidence

Motivation

Uncertainty and climate change

- Uncertainty about the response of the climate system and its consequences on the natural and human processes is wide.
- The cost of climate mitigation is presumed to be known with greater confidence

But mitigation costs are also uncertain

- Uncertainty of mitigation costs is wide and is increasing over time (Lemoine \& McJeon, 2013; Drouet et al., 2015).
- This has an important implication when taking decision under uncertainty:
\triangleright Stringent policy implies a risk of a very costly mitigation.

Current knowledge on mitigation costs

IPCC AR5 scenario database

- created for the IAMC and is hosted by IIASA
- model outcomes reviewed by the AR5 WGIII of IPCC
- publicly available at

```
https://secure.iiasa.ac.at/web-apps/ene/AR5DB
```


Dataset description

- 25'000 mitigation costs
- 9 model intercomparison projects
- time range: 2020-2100 (every 10 year)
- model versions [19]
- scenarios [157]

IPCC AR5 mitigation costs

Distribution of policy cost [all models, all scenarios]

Research question

What are the main drivers of uncertainty of our current knowledge of the climate change mitigation costs?

Main components

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) - 5 classes

Main components

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) - 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) - 6 classes

Main components

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) - 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) - 6 classes
- Model - 12 models

Main components

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) - 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) - 6 classes
- Model - 12 models
- Baseline (socio-economic pathway)

Main components

We identified 4 major components to explain the mitigation cost variations:

- Climate target (Forcing in 2100) - 5 classes
- Policy implementation (delay, technology restrictions, cooperation level) - 6 classes
- Model - 12 models
- Baseline (socio-economic pathway)

Note

By construction, these components are not fully independent.

Baseline

Socio-economic pathways

The Shared Socio-economic Pathways (SSP)

- The 5 narratives have been recently quantified by 6 models (Riahi et al., 2016) and collected into the SSP database.
- We characterize the AR5 baseline scenarios with this new dataset.

SSP attribution

PCA on SSP reference scenarios using cumulative emissions, carbon intensity, energy intensity at world and region levels.

SSP attribution

Projection of the AR5 baseline scenarios: most of them are close to the SSP2 and SSP4 clusters.

SSP attribution

Association of the AR5 scenarios to the SSPs.

Correlation ratio

Correlation ratio

How much of the variations in Y (mitigation cost) can be explained by the variations in a driver X_{i}, where $Y=Y\left(X_{1}, X_{2}, \ldots, X_{n}\right) ?$

Correlation ratio η^{2} (Pearson, 1926)

$$
\eta^{2}\left(Y \mid X_{i}\right)=\frac{\operatorname{Var}\left(E\left[Y \mid X_{i}\right]\right)}{\operatorname{Var}(Y)}
$$

Based on the law of total variance, the correlation ratio does not require that the variables are independent or identically distributed.

Law of total variance: $\operatorname{Var}(Y)=E\left(\operatorname{Var}\left[Y \mid X_{i}\right]\right)+\operatorname{Var}\left(E\left[Y \mid X_{i}\right]\right)$

Uncertainty decomposition - Main components

Main components									
Model	74	76	74	77	78	77	77	76	76
Policy implementation	5	4	5	6	7	7	8	9	9
Climate category	1	1	3	4	5	6	7	10	10
Baseline	3	3	5	5	5	6	6	5	5
	2020	2030	2040	2050	2060	2070	2080	2090	2100
			$\eta^{2}[\%]$	0	25	50	75	100	

Correlation ratio for mitigation costs expressed in \$/tCO2

Uncertainty decomposition - Model

Distribution of policy cost versus model [19 models]

Uncertainty decomposition - Model

Model

Model characteristics

Equilibrium

Uncertainty decomposition - Model characteristics

Model characteristics - Carbon price										
Model	74	76	74	77	78	77	77	76	76	
Model\|Cost	52	57	54	53	50	45	44	40	40	
Mode\|	Nb. region	42	37	25	20	17	17	17	19	20
Model\|	Flexibility	35	26	14	12	11	12	12	13	13
Model\|Equilibrium	34	28	16	9	6	6	5	6	5	

Correlation ratio for mitigation costs expressed in \$/tCO2

Mitigation cost estimates - Cost

Conclusions

Summary

- Mitigation costs are also uncertain.
- "Model" is the most important component to explain the variation of the mitigation costs reviewed by the IPCC AR5.
- "Baseline" component is not important.

Recommendations for future assessments

- The use of models of different nature is primordial.
- More baseline (SSP), but mitigation costs are harder to compare (Drouet and Emmerling, 2016).
- $1.5^{\circ} \mathrm{C}$?

Thanks

email: laurent.drouet@feem.it

Uncertainty decomposition - Main components

Main components

Correlation ratio for mitigation costs expressed in \$/tCO2, standard deviation and min-max range in a jackknife resampling.

Uncertainty decomposition — Model characteristics

Correlation ratio for mitigation costs expressed in \$/tCO2, standard deviation and min-max range in a jackknife resampling.

