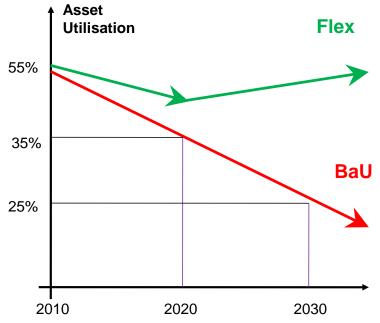
Role and value of flexibility in supporting cost-effective transition to an integrated low-carbon energy system

Marko Aunedi and Goran Strbac Imperial College London

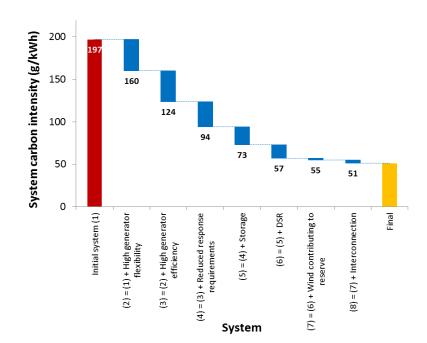
wholeSEM 3rd Annual Conference

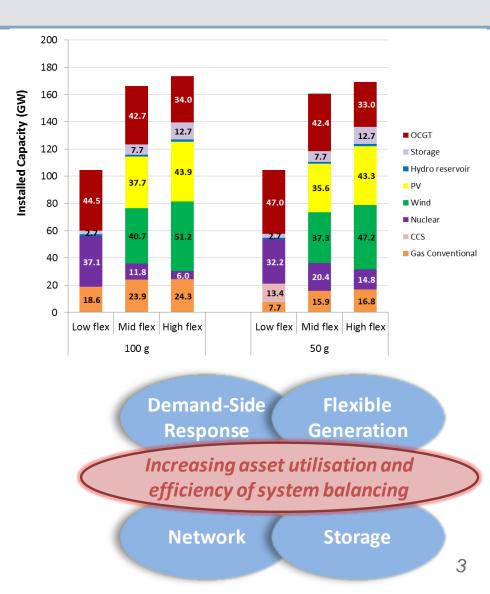
"Energy Modelling Insights for Iterative Decision Making" 5 July 2016



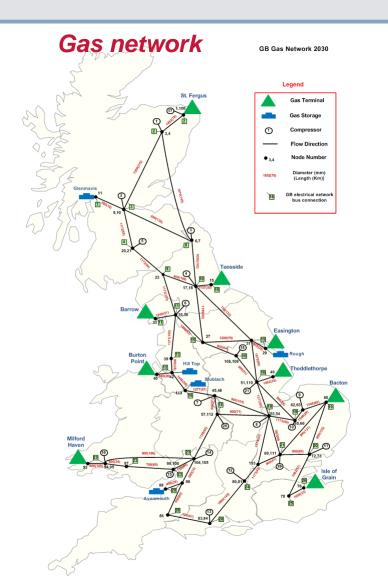
Background

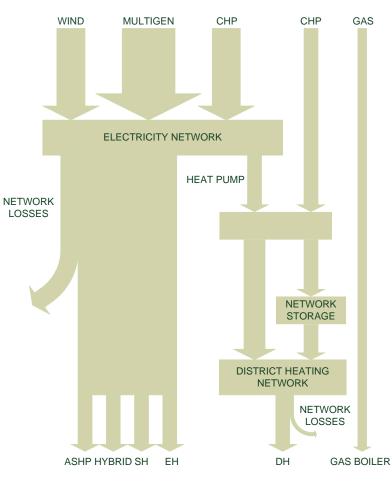
- Ambitious decarbonisation targets in the UK in 2030-2050 horizon
 - Rapid expansion of RES and less flexible low-carbon generation
 - Electrification of heat and transport demand
 - Reduction of capacity and output of conventional (coal and gas) units
- Potentially negative impact on asset utilisation, increasing system costs


\rightarrow Need for additional flexibility



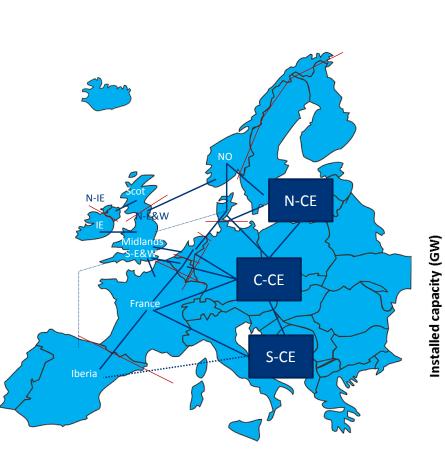
Why we need flexibility


- Previous analysis shows significantly more investment is needed in absence of flexibility
- Flexibility can support a cheaper low-carbon generation mix to meet a given carbon reduction target

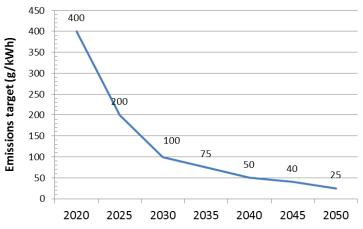


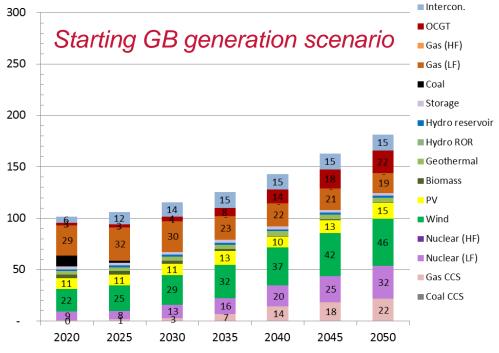
Flexibility extends beyond electricity system boundaries

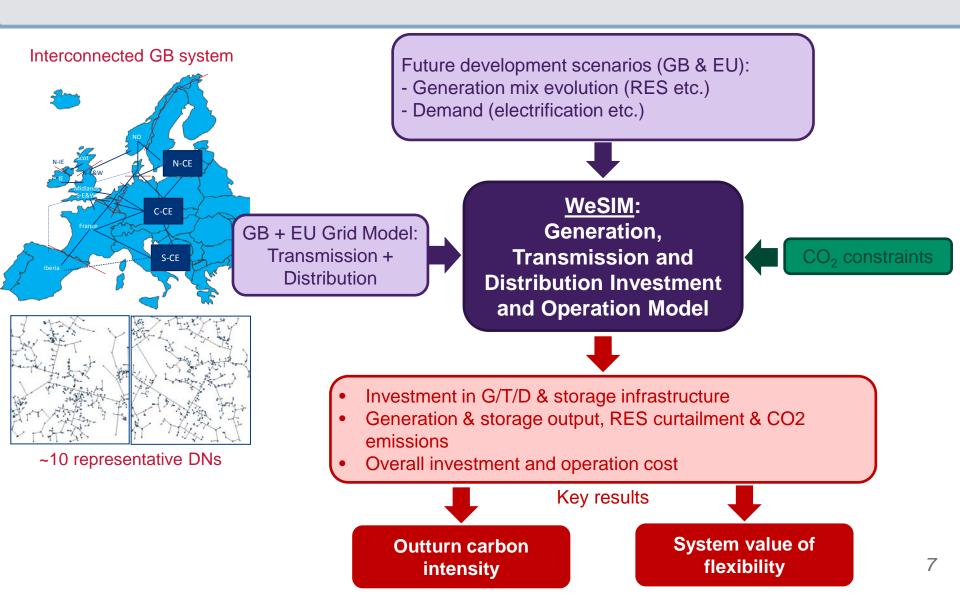
Integrated electricity and heat networks

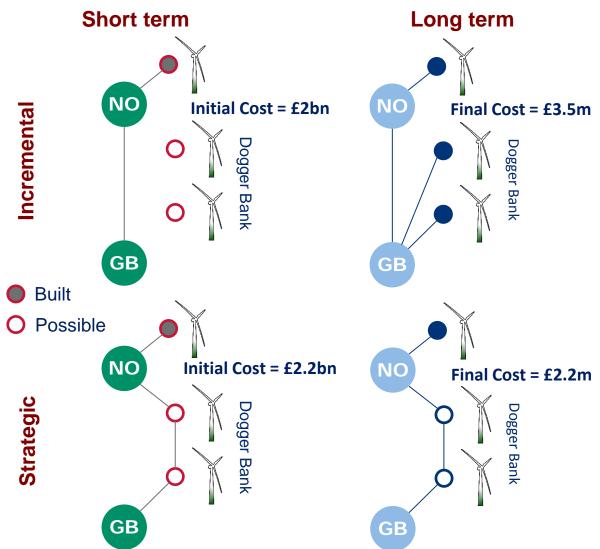


Role of flexibility under uncertainty


- Understanding the role of flexibility is very complex and associated with a number of uncertainties
 - Evolution of future energy system
 - Projected cost and availability of different flexibility options
- Despite uncertainties, key investment decisions need to be made in the short-term but will have a lasting impact due to long lead times
- This creates the possibility for *regret* i.e. additional cost due to suboptimal decisions
- Flexibility can provide option value postponing decisions on larger investments until there is better information, hence reducing the need to make potentially high regret decisions
- *'Least-worst regret'* approach is about quantifying the worst possible outcomes for a set of strategic choices, and then identifying the choice with the 'least-worst' outcome


GB emission target


System configuration



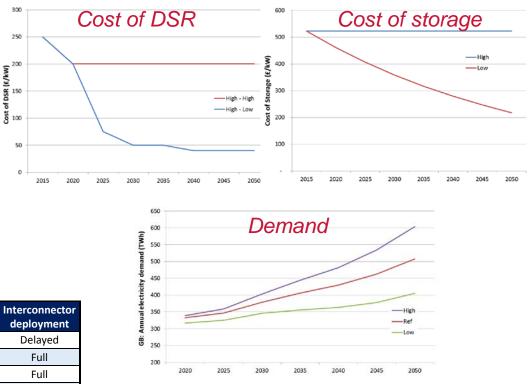
Multi-year Whole electricity System Model (WeSIM)

Example of least-worst regret analysis: investment in offshore grids

Should we strategically connect GB and NO via Dogger Bank (with uncertain but possible development of offshore wind), or connect offshore wind farms incrementally if/when the need arises?

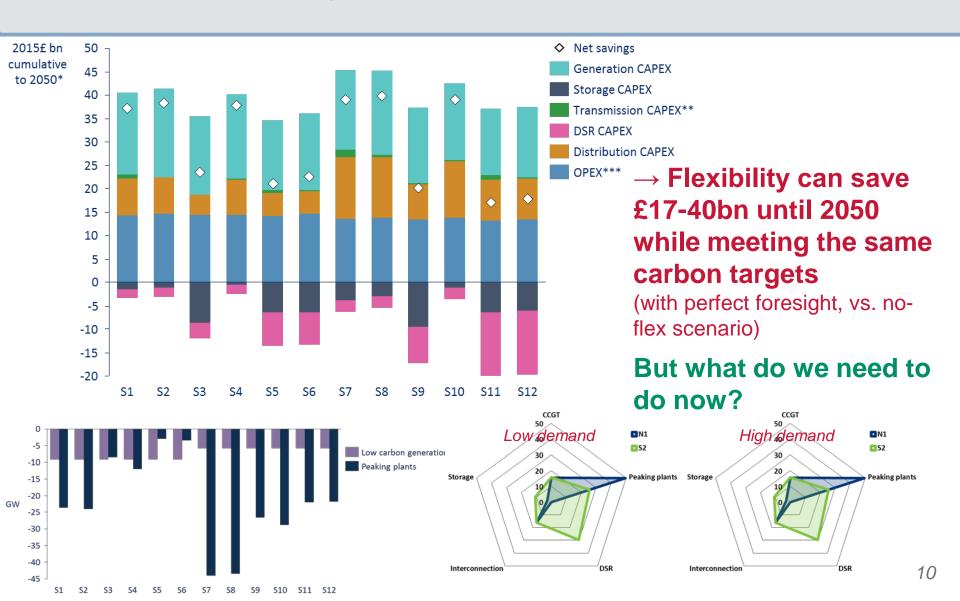
> Max regret:

Incremental: £1,500m
Strategic: £200m


Least – Worst Regret Option

Uncertainties/scenarios considered in the analysis

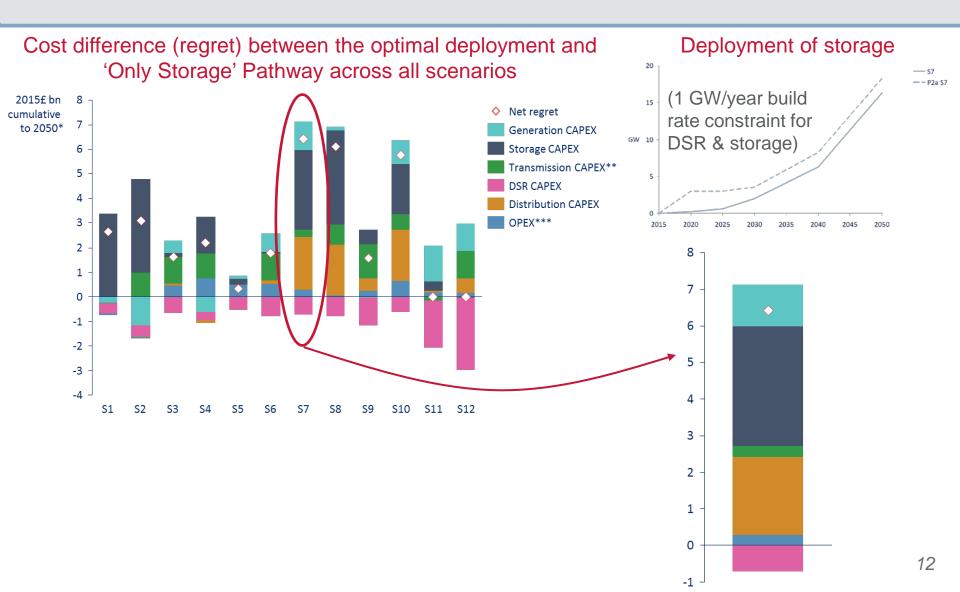
- Cost of DSR: High/Low
- Cost of storage: High/Low
- System demand/generation background: High/Low
- Deployment of new interconnection capacity between 2025 and 2030: as planned (14 GW by 2030) or none
- Challenge: keep the number of combinations low while covering extremes


Scenario	De	St	Ds	In	System demand	Cost of storage	Cost of DSR	Interconnector deployment	
\$1		٠			Low	Low	Low	Delayed	
S2		٠		٠	Low	Low	Low	Full	
S3		٠		٠	Low	Low	High	Full	
S4		٠		٠	Low	High	Low	Full	
S5		٠			Low	High	High	Delayed	
S6					Low	High	High	Full	
S7		٠			High	Low	Low	Delayed	
S8		٠		٠	High	Low	Low	Full	
S9		٠		٠	High	Low	High	Full	
S10					High	High	Low	Full	
S11		•	•		High	High	High	Delayed	
S12		٠		٠	High	High	High	Full	

Imperial College London and Carbon Trust, "An analysis of electricity system flexibility for Great Britain", report for DECC, July 2016

Value of flexibility across scenarios

Least-worst regret analysis


- Based on optimal deployment of flexibility across all 12 scenarios four key Pathways (short-term deployment strategies) are formulated
- These decisions are fixed across all scenarios and the model rerun to quantify the increase in cost i.e. regret for each scenario

	Pathway		Pathway DSR in 2020			Storage in 2020			Flexible CCGT in 2020			Additional interconnection in 2025				
	Only D	SR	2-5			-			-			-				
	Only Storage		-			1.2-3			-			_				
	Balanc	Balanced		1-5		0.	.5-3 1					-				
	Do Nothing		-			-			-			-				
		S1	S2	S3	S4	S5	S6	S7	S8	S 9	S10	S11	S12		Worst regret	
Or	nly DSR	0.0	0.1	1.7	0.0	0.5	1.6	0.0	0.0	1.0	0.0	0.4	0.2		1.7	
Only	Storage	2.6	3.1	1.6	2.2	0.3	1.8	6.4	6.1	1.6	5.8	0.0	0.0		6.4	
Ва	lanced	0.0	0.2	1.4	0.1	0.2	1.3	0.1	0.0	0.7	0.1	0.0	0.0		1.4	
Do	Nothing	4.5	4.3	1.8	4.4	0.8	1.6	9.0	8.5	1.7	8.9	1.6	1.4		9.0	11

Example for the 'Only Storage' Pathway

Key findings

- The UK could save *£17-40bn* across the electricity system from now to 2050 by deploying flexibility technologies
- Not deploying any additional sources of flexibility ('Do Nothing') by 2020 is the Pathway that delivers the *greatest regret* (£9bn)
- **'Balanced'** strategy of deployment across different sources of flexibility represents the least-worst regret pathway
- **DSR** has a key role in providing flexibility but also has the greatest uncertainty in terms of cost and uptake (non-technical barriers)
- **Energy storage** represents a critical ingredient in the future flexibility portfolio, particularly if cost reductions in other flexibility technologies are slow
- Interconnectors are a key source of flexibility for the UK; any delays to the expected pipeline would increase costs
- **Gas power plants** have a long-term role by providing both flexibility and peaking capacity, although with reducing utilisation over time
- Further demonstration, trials etc. are needed + more streamlined regulatory and market framework
- Action is required now to have an efficient flexibility portfolio in place by ~2020

Role and value of flexibility in supporting cost-effective transition to an integrated low-carbon energy system

Marko Aunedi and Goran Strbac Imperial College London

wholeSEM 3rd Annual Conference

"Energy Modelling Insights for Iterative Decision Making" 5 July 2016

