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« Electricity system balancing Is expected to become more challenging in the
future due to the integration of large volume of renewable energy sources [1].

* In this study, the benefits of multi-directional compressor units as the gas
network infrastructure flexibility for joint operation of gas and electricity
networks, in order to address electricity balancing challenges is evaluated.

* Hour-by-hour dynamic capturing.

* In Sequential modelling; The electricity network operation iIs minimised and
then the gas network operation is minimised.
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FIGURE 1. Structure of Integrated modelling based on [2]
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FIGURE 2: Great Britain gas and electricity networks in 2030.
TABLE 1: Generation capacity mix in 2030 [1]
Type Wind Gas Interconnector Nuclear  Coal Pumped Hydro Other
with CCS Storage
Capacity 52 33 11.5 9 4.5 2.7 1.1 1.2
(GW)
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Integrated vs Sequential Approach
In Integrated modelling
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FIGURE 5: Structure of multi-directional Gas Network Flexibility

COMpressor In presence of multi-directional compressors
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* Direction change of compressors in red colour (Figure 9).
* Less reduction of gas demand for other uses: 76.80 mcm (Table 2).
* |Improvement in operational cost of the gas and electricity networks
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TABLE 2 TABLE 3 FIGURE 9
Case Study Gas Load Case Study Electrical Gas Network Total
Reduction (mcm) Network (M£) (ME) (ME)
One- 76.80 One- 96.8 1627.7 1724.5
Directional Directional
Multi- 0.00 Multi- 86.7 802.4 889.1
Directional Directional

* Through Integrated modelling the security of the networks Is increased as all gas
and electricity constraints are considered simultaneously.

 Installation of multi-directional compressor units in the gas network contributes to
cope with the system-wide unbalanced situation of supply and demand.

* Using these units, reduce the total operational cost of the networks compared to
one-directional compressors, due to the additional flexibility that is given to the
network to deliver gas to the demand centres.
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