

Value of Gas Network Infrastructure Flexibility for Supporting Future Low Carbon Power Systems

Hossein Ameli and Goran Strbac

Department of Electrical and Electronics Engineering, Imperial College London

INTRODUCTION

- Electricity system balancing is expected to become more challenging in the future due to the integration of large volume of renewable energy sources [1].
- In this study, the benefits of multi-directional compressor units as the gas network infrastructure flexibility for joint operation of gas and electricity networks, in order to address electricity balancing challenges is evaluated.

RESULTS

<u>Integrated vs Sequential Approach</u>
In Integrated modelling
Less gas plants generation (Figure 3).
Cost improvement (Figure 4).

INTEGRATED GAS AND ELECTRICITY NETWORKS MODEL

- Hour-by-hour dynamic capturing.
- In Sequential modelling; The electricity network operation is minimised and then the gas network operation is minimised.

FIGURE 5: Structure of multi- compressor	-directional Gas Network Flexibility In presence of multi-directional compressors				
Energy Changes (%) 2.5	 Normal Operation: Gas plants generation and pump storage injection , power through interconnector Less operational cost 				
2 1.5 1 0.5 0 -0.5 Gas Pump Inter	 2. Partial Outage of Bacton Gas Terminal: Gas plants generation SO use of Interconnectors (More expensive option) . Figure 7 is presented in <i>low wind-high demand</i> period. 				
-1 -1.5 -2 -2.5 -3	One-Directional —Multi-Directional 40 35 30 25 20 15 10				

Unit commitment
and economic
dispatch of
generatorsOptimal power/
gas flow, optimal
operational costGas pressure at each
node and gas
linepack in pipelinesDirection of
gas
compressors

FIGURE 1. Structure of Integrated modelling based on [2]

FIGURE 6

5		-					
0							
V							

FIGURE 7

- Direction change of compressors in red colour (Figure 9).
- Less reduction of gas demand for other uses: 76.80 mcm (Table 2).
- Improvement in operational cost of the gas and electricity networks over the week: m£ 835.4 (~48%); Table 3.

FIGURE 8: Gas load reduction in different nodes

TABLE 2		TABLE 3	FIG		
Case Study	Gas Load Reduction (mcm)	Case Study	Electrical Network (m£)	Gas Network (m£)	Total (m£)
One- Directional	76.80	One- Directional	96.8	1627.7	1724.5
Multi- Directional	0.00	Multi- Directional	86.7	802.4	889.1

FIGURE 2: Great Britain gas and electricity networks in 2030.

TABLE 1: Generation capacity mix in 2030 [1]

Туре	Wind	Gas	Interconnector	Nuclear	Coal with CCS	Pumped Storage	Hydro	Other
Capacity (GW)	52	33	11.5	9	4.5	2.7	1.1	1.2

CONCLUSIONS

- Through Integrated modelling the security of the networks is increased as all gas and electricity constraints are considered simultaneously.
- Installation of multi-directional compressor units in the gas network contributes to cope with the system-wide unbalanced situation of supply and demand.
- Using these units, reduce the total operational cost of the networks compared to one-directional compressors, due to the additional flexibility that is given to the network to deliver gas to the demand centres.

REFERENCES

1.National Grid, Future energy scenarios, 2014, Online at:

http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/FES/Documents-archive/

2.Chaudry, M., Jenkins, N., Strbac, G., 2008. Multi-time period combined gas and electricity network optimisation. Power Systems Research 78, 1265–1279.

Contact Details: h.ameli14@imperial.ac.uk