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Electricity generation system operation and planning
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Electricity generation system operation and planning

e LUSYM framework

o Operational model
* Mixed-integer programming for unit commitment
« Unpredictability: forecast errors, reserve sizing/allocation/activation

 New technologies: e.g., CCS, active grid elements, power-to-gas

o Expansion planning models - TIMES framework

- Improve operational representation and technical detail

- Uncertainty and market elements

o Energy policy and market applications
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LUSYM: Set-up of the standard unit commitment model

* Mixed Integer Linear Programming
o Solve on HPC
o Large-scale model set up
o Tight and compact formulation

o “Flexible” model

o Computation time is important factor
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LUSYM: Validation of the standard unit commitment model

Calibration on the European system (ENTSO-E area, 2013)
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LUSYM: Uncertainty in the unit commitment model
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LUSYM: Expansion planning model

* Increasing the level of temporal detall
o Optimization to select set of representative days

e Duration curves

- Load

- RES series
- Ramping

- Correlations
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Electricity generation system operation and planning
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Thermal inertia allows decoupling
the electrical demand and the
thermal demand without loss of
comfort

Conventional & stochastic
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Complex interactions between demand and supply: how do
you capture this in an operational model?

Energy

N | kuLEUVEN




Modeling challenges & issues

A Detail of model

Focus on SUpply side: Computational cost

Simplified representations of
the demand side flexibility in
a unit commitment and

economic dispatch model LY
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Modeling challenges & issues

| Detail of model Focus on demand side:
Computational cost ) . .
Simplified representations of
the supply side in a detailed
thermal building simulation or
optimization model
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Modeling challenges & issues

4 Detail of model
Integrated model (IM) Computational cost

Combination of a UC&ED
model and a detailed thermal
building model
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Joint optimization: minimize total operational cost

cost of
electricity
i
v
demand for, -
electricity
UC & ED model, considering set of DR-adherent demand model:
power plants, RES-based RC network (thermal dynamics
generation and a fixed demand building), linear heat pump model,
profile (MILP) user behavior & external gains (LP)
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An integrated model

Joint optimization: minimize total operational cost

 Thermal properties * Technical
of buildings, characteristics heat
aggregated in a pumps
building stock * User behavior
model profiles

Electric heating

Thermal

Power plants
Demand
RES profiles
CO, price

Unit commitment
and economic
dispatch

Building stock  popmmpm——rg systems:
heat pumps
Linear state-space model Linear technical model
Different building types Different user behaviour
types

Mixed integer linear
programming model
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An integrated model: a first example
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* Power system inspired on possible future setting of BE power system;
e 250,000 heat pumps;

e 52 user behavior profiles.
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An integrated model: a second example
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Value of DR-based arbitrage and regulation services
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Impact of limited DR-controllability

=== NoDR=== 6=0MW —@= 0 =50 MW —f— 0 = 100 MW —bee 7 = 250 MW

110 —

e ity e T T -

E[TOC] (% TOC W7)

\++

) == = = e = e e e e e - - - —- - ————— === = - [ = ===
Risk-averse SO Risk-neutral SO

From: Bruninx, K., Dvorkin, Y., Delarue, E., D’haeseleer, W., Kirschen, D. Valuing Demand Response Controllability
via Chance Constrained Programming. IEEE Transactions on Sustainable Energy, 2017, in press.
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Conclusion

Integrated modelling framework
» Operational demand and supply side model formulated using MILP
« More accurate representation w.r.t. other methods
« Merit order model provides valuable results at much lower computational
cost
* Myriad of applications possible

Demand response with heat pumps
« Could hold significant environmental and economical advantages: operational
cost savings, (additional) peak demand reduction, cost-effective regulation
services
e Current modeling provides upper bound
Controllability needs being accounted for

Future work

Impact on heating system design and life time
* Heterogeneity of DR-loads, user behavior, building types
» Conflicting objectives building owner — system operator
* Long term system adequacy
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