

Optimal decarbonisation trajectories for the global (petro)chemical sector

Peter G. Levi	pgl26@

Jonathan M. Cullen

jmc99@cam.ac.uk

cam.ac.uk

University of Cambridge, Department of Engineering

...with special thanks to Araceli Fernandez Pales, Kira West and Eric Masanet at the International Energy Agency

Wholesem Conference, London, July 2017

Rationale

World

2013					onu							
2013			M	illion tonne	s of oil equi	valent						
SUPPLY AND CONSUMPTION	Coal ¹	Crude oil	Oil products	Natural Gas	Nuclear	Hydro	Geotherm. solar etc.	Biofuels & Waste	Electricity	Heat	Total	
Production Imports Exports Stock changes	4006.39 830.71 -861.05 -48.28	4215.68 2246.43 -2181.49 -6.84	- 1174.72 -1238.37 -0.59	2908.63 872.91 -895.29 15.37	646.48	325.93	161.36	1375.46 15.89 -13.84 -0.50	- 59.94 -56.99	2.20 0.00 -0.01	13642.14 5200.61 -5247.03 -40.84	
TPES	3927.77	4273.78	-64.25	2901.63	646.48	325.93	161.36	1377.02	2.95	2.20	13554.88	
Transfers Statistical differences Electricity plants CHP plants Heat plants Blast furnaces Gas works	-0.42 -170.55 -2094.33 -175.68 -134.45 -208.32 -7.22	-181.46 12.97 -39.86 -0.01 -0.79	224.28 -9.27 -211.14 -16.74 -11.16 -0.43 -3.13	-0.00 10.27 -748.65 -322.41 -97.92 -0.04 3.44	-638.86 -7.63 -	- -325.93 - -	-0.00 -123.80 -2.55 -1.07	-0.36 -86.98 -55.66 -11.27 -0.03 -0.07	1.80 1824.70 179.71 -0.35	-0.38 -0.63 149.74 178.68	42.40 -155.51 -2445.47 -251.23 -78.33 -208.82 -6.99	
Coke/pat.fuel/BKB/PB plants Oil refineries Petrochemical plants Liquefaction plants			STRY					-0.13 - -			-71.43 -73.66 0.07 -12.73	2623.45
Other transformation Energy industry own use Losses			nd ste ical a		etro	cher	nical	-78.20 -13.80 -0.15 1130.35	-168.63 -163.67 1676.51	-0.74 -34.80 -20.20 273.88	-82.30 -819.83 -218.25 9172.80	473.90 366.99
INDUSTRY Iron and steel Chemical and petrochemical	29 7	on-fe	errou	s me	tals		mour	193.55 3.70 1.51	710.29 99.65 97.45	123.38 16.46 46.82	2623.45 473.90 366.99	118.87
Non-ferrous metals Non-metallic minerals Transport equipment		on-m	netall		nera	ls		0.13 8.81 0.02	77.78 49.91 21.42	3.46 2.63 3.84	118.87 361.67 45.81	361.67
Machinery Mining and quarrying Food and tobacco Paper pulp and printing Wood and wood products Construction	14.68 7.46 23.67 18.96 2.43 4.40	0.01	7.83 24.13 10.50 4.38 1.72 27.94	23.75 7.26 42.07 22.55 2.54 7.16			0.00 0.00 0.17 0.00 0.00	0.22 0.18 32.24 55.39 10.47 0.39	78.58 28.88 39.32 36.66 8.53 13.96	7.10 2.65 11.61 11.36 2.01 1.78	132.16 70.56 159.43 149.47 27.70 55.63	
Textile and leather Non-specified TRANSPORT World aviation bunkers Domestic aviation	10.77 86.86 3.54	0.01 10.14 0.02	3.49 124.70 2361.75 163.55 100.13	5.27 169.05 96.19	-	-	0.00 0.66 0.00	0.26 80.23 64.52	28.54 129.61 25.82	7.79 5.87	56.14 607.12 2551.85 163.55 100.13	
Road Rail Pipeline transport World marine bunkers	3.34	0.02	1823.17 31.25 0.37	35.47 60.02	-			63.71 0.38 0.03	0.25 19.50 2.87		1922.61 54.47 63.29 190.37	(
Domestic navigation Non-specified OTHER Residential			-ENE lustry			_	av	0.39 0.01 8 72.28 837.71	3.20 940.40 451.00	- 150.50 105.99	48.13 9.32 3198.72 2130.56	798.77 769.96
Comm. and publ. services Agriculture/forestry Fishing		of w	hich:	cher			hem.	22.41	375.02 47.09 0.41 66.88	33.11 5.49 0.01 5.90	745.29 192.69 7.95	577.14
NON-ENERGY USE in industry/transf./energy of which: chem./petrochem. in transport in other		n tra n oth	nspo ner	ort							798.77 769.96 577.14 12.22 16.60	12.22 16.60

Energy consumption 10% of total global final energy 27% of industrial final energy Challenging sector to decarbonize

Source: IEA (2016) World Energy Balances.

Greenhouse gas emissions
7% of anthropogenic GHG emissions
20% of industrial GHG emissions
Many more upon latent release

Source: IEA, DECHEMA & ICCA (2013) Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes

Current prescriptions for mitigation

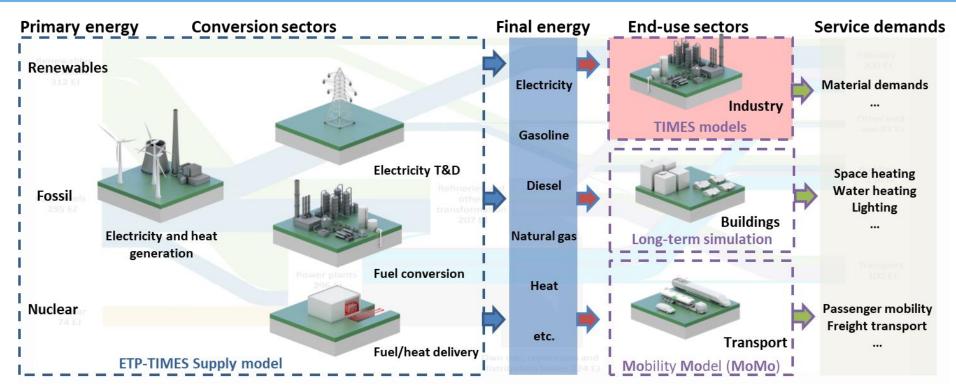
Fuel and feedstock switching

- Non-biomass benefits 'capped'
- **Biomass sustainability challenges**
- IPCC total in 2050 ~ 100-500 EJ yr⁻¹
- Economic feedstock ~ 15-17 EJ yr⁻¹

Process energy efficiency

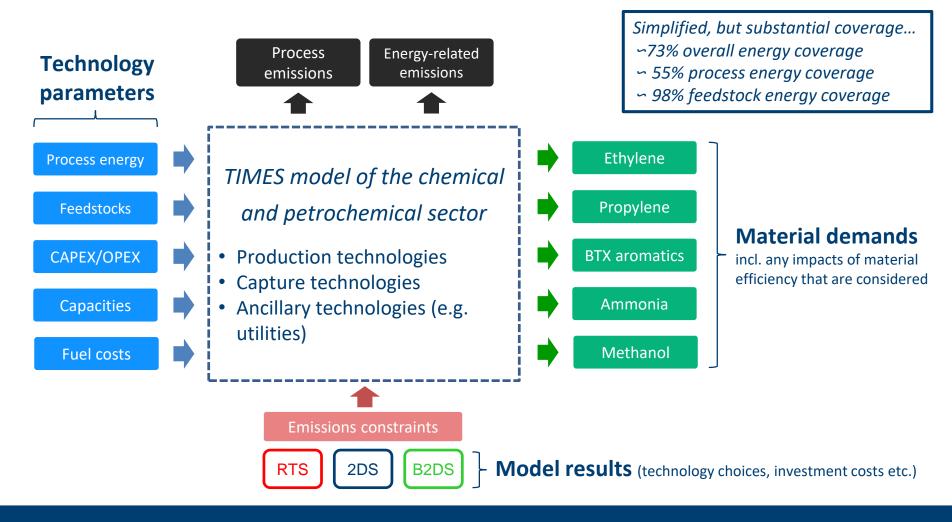
- No direct impact on feedstock
- Process energy proportion is declining as a share of the sector's total energy inputs

Too many studies to list; some notable academic authors:

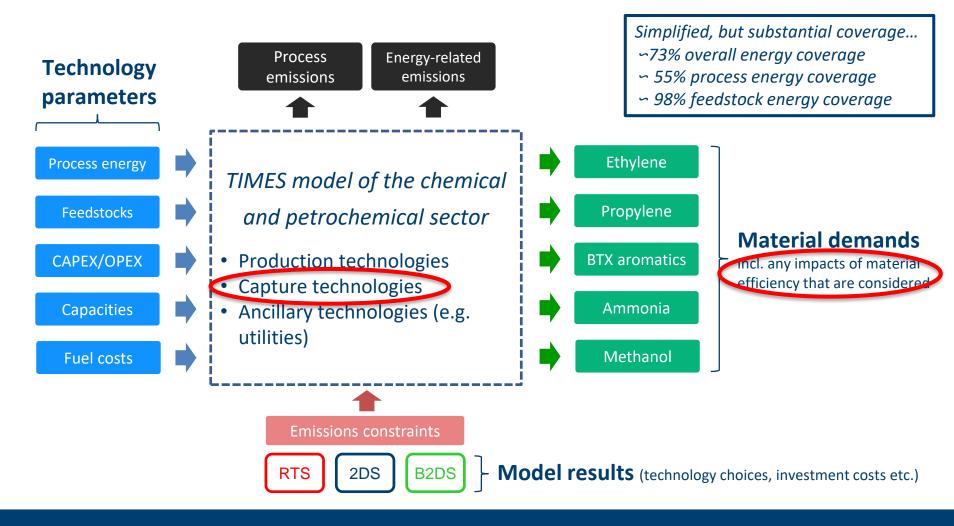

> Martin Patel Martin Weiss Maarten Neelis Dolf Gielen Ernst Worrell Kornelis Blok Deger Saygin Vassilis Daioglou

Innovative low carbon processes (incl. CCS)

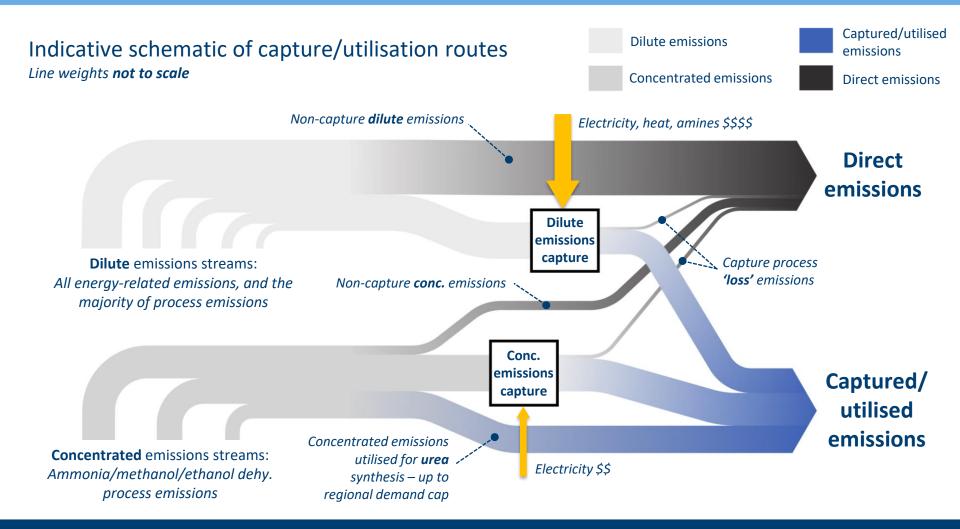
- Innovation required in advance! ۲
- Scaling and commercial difficulties
- 150 MtCO₂ yr⁻¹ in chemical sector by 2025
- Current global *capacity* 44 MtCO₂ yr⁻¹


The IEA's ETP modeling fleet

- Four soft-linked models based on simulation and optimisation modelling methodologies
- Model horizon: 2014-2060 in 5 year periods
- World divided in 28-42 model regions/countries depending on sector
- For power sector linkage with dispatch model for selected regions to analyse electricity system flexibility



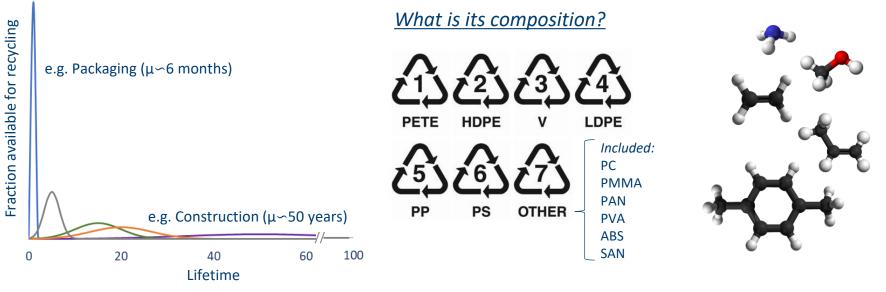
Chemicals model structure overview



Chemicals model structure overview

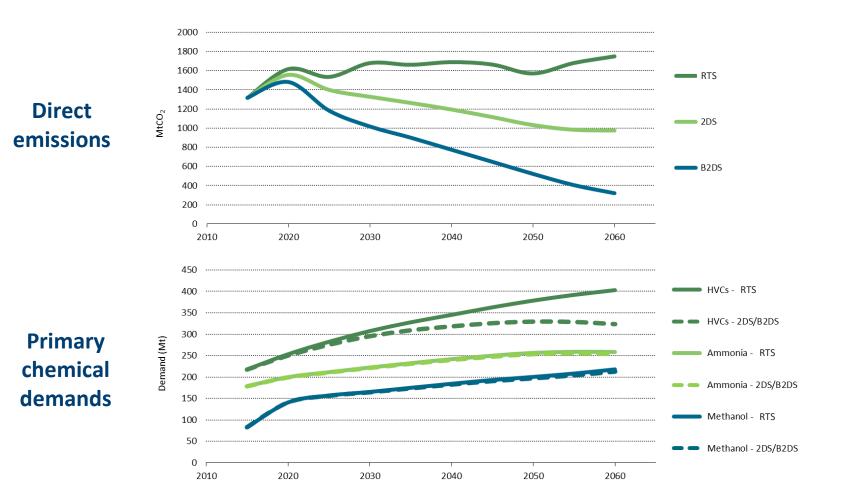
Carbon capture and utilisation

Material efficiency (thermoplastic recycling)


For each resin, region and time slice...

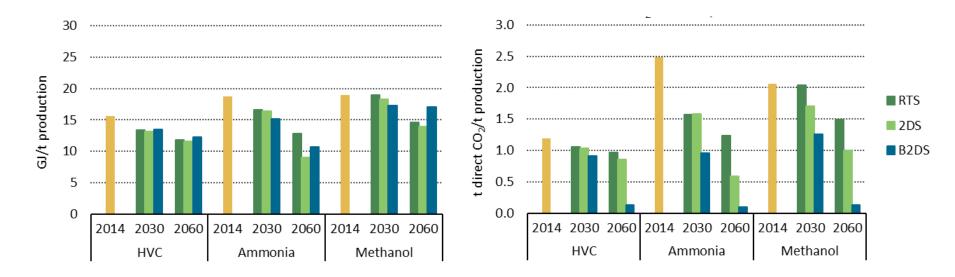
Primary chemical savings ~ $f(\eta_d, \eta_v, \eta_c, Q_p, \mathbf{C})$

Where; η_d = 'down-cycling' factor (%), η_y = recycling yield (%), η_c = collection rate (%), Q_p = recyclable plastic (Mt), **C** = mapping matrix.


How much recyclable plastic is available?

Primary chemical savings?

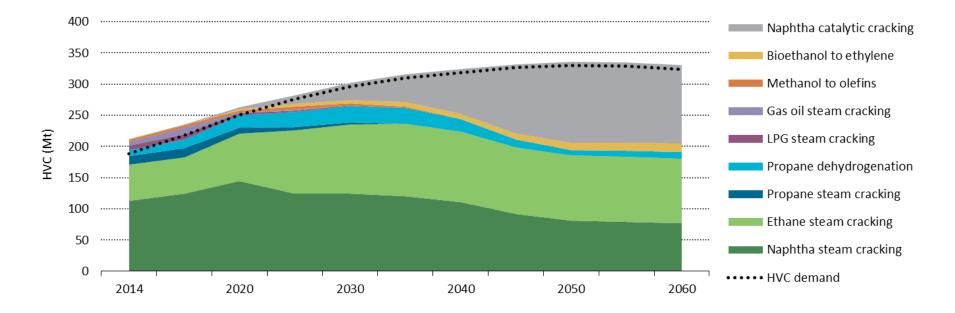
Scenarios and demand (global)



Results: Product-focused overview

Energy intensities (LHS graph) and direct CO₂ intensities (RHS graph) for each chemical/scenario

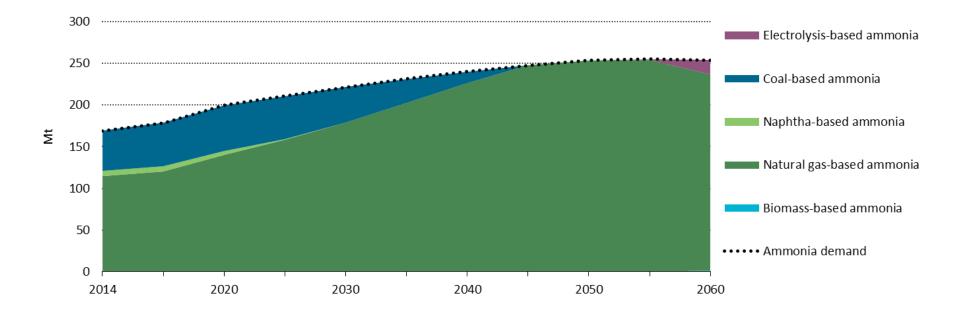
- B2DS energy intensities higher than 2DS in 2060 low-carbon routes and capture
- Virtually complete decarbonization (~90% per unit of output) is required in the B2DS by 2060
- Significant emissions cuts needed early (24-62% per unit by 2030) to avoid greater expense



B2DS results

HVC production – penetration of various technologies throughout horizon

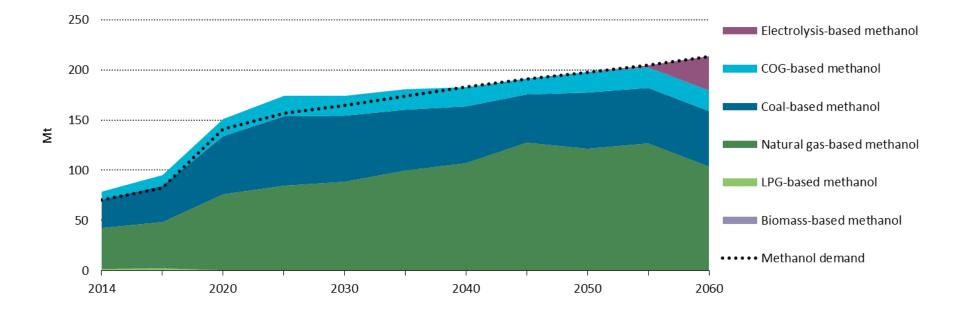
- Traditional steam cracking routes remain important in 2060
- On-purpose technologies' importance diminishes in the long-term



B2DS results

Ammonia production – penetration of various technologies throughout horizon

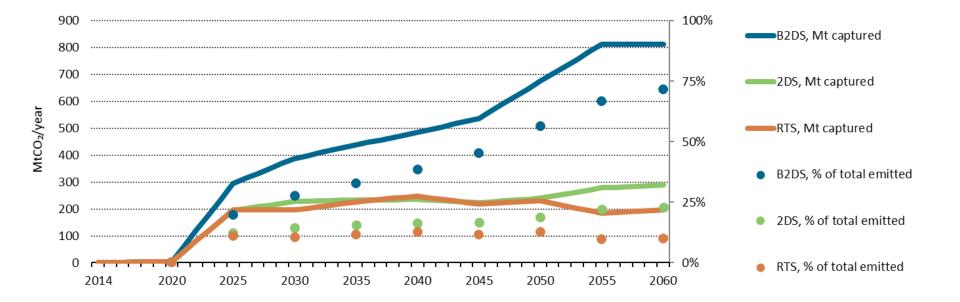
- Intuitively, coal-based ammonia (even with CO₂ capture/utilisation) is phased out by 2045
- Renewable hydrogen route only appears attractive after 2055



B2DS results

Methanol production – penetration of various technologies throughout horizon

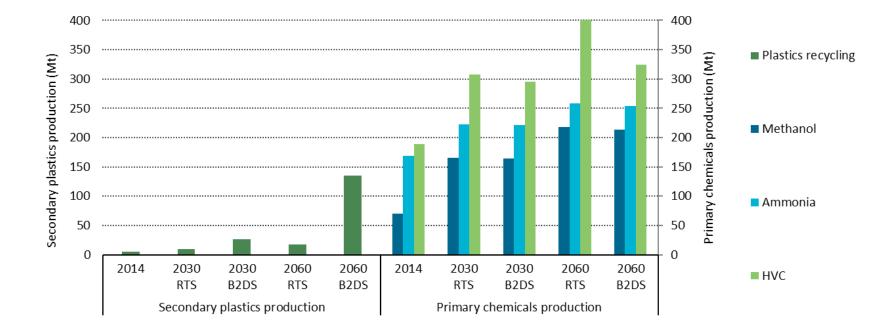
- Similar to ammonia; renewable hydrogen route competitive after 2055
- Otherwise feedstock mix remains nearly unchanged in 2060, albeit with CO₂ capture

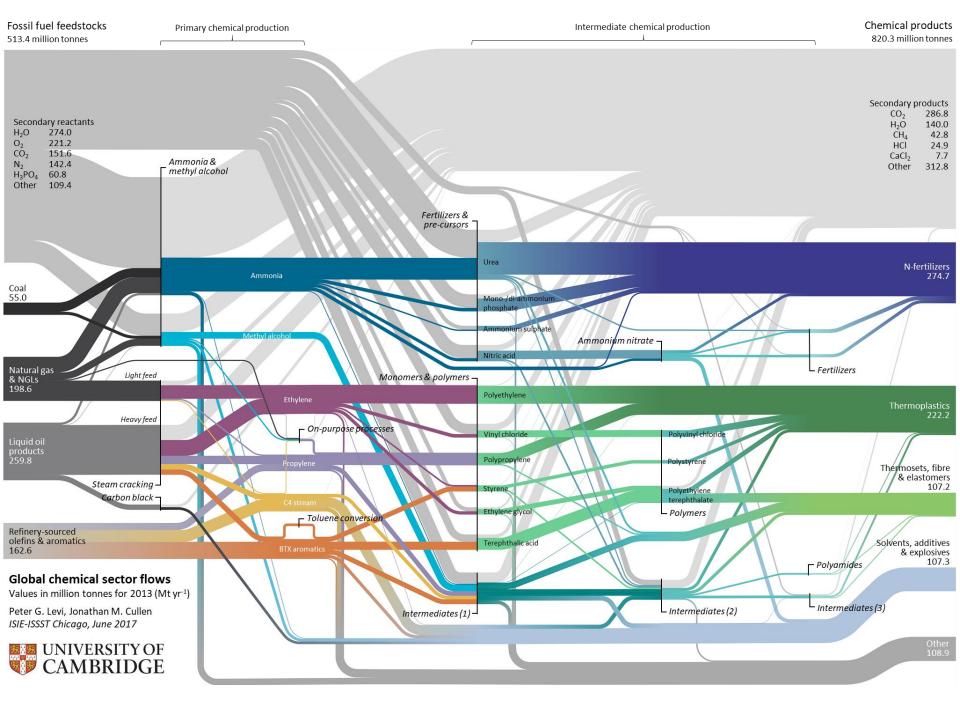


Summary of CO₂ capture results

CO₂ capture – total penetration in each scenario throughout horizon

- 2DS requirements do not diverge significantly from RTS until after 2040
- Much progress is needed current global *capacity* for all applications is roughly 44 MtCO₂




Summary of material efficiency savings

Material efficiency – secondary plastics production/subsequent primary chemicals demand

- Majority of impact on HVCs as pre-cursor monomers are principally olefins and aromatics
- More than a fifth of thermoplastic demand is met by secondary routes in 2060

Thank you!

Questions and comments welcome

pgl26@cam.ac.uk

