

# Overview of Energy-Economic Modelling

Parliamentary Office of Science and Technology (POST) Training Seminar 6<sup>th</sup> April 2016

Francesco Fuso Nerini and Nawfal Saadi Failali

**UCL Energy Institute** 

n.strachan@ucl.ac.uk









# **Overview of Session**

#### • Part I

– The science vs. art of energy modelling

#### • Part II

- UK TIMES: An well-known energy systems optimisation model
- Part III
  - Sample results on the UK's long-term decarbonisation pathway



wholeSEN

# **UC**

# What this seminar is NOT...

- "Energy: Predicting the Future Macro-economic & decarbonisation modelling"
  - I have never made a long term energy forecast in my life!
- Only sometimes is replicating historical trends a good idea
  - The past is not a good guide to the future
  - Models can replicate the past by tuning various combinations of their component variables
  - There can be a modelling trade-off between statistical validation and theoretical underpinnings
- Today I am going to talk about exploratory modelling of possible futures
  - Insights from comparing different futures is much more important than any one
     scenario



# What this seminar is...

- Energy policy across the globe is grappling with a set of unprecedented challenges:
  - Including decarbonisation, security, competitiveness, equity
- Energy models provide essential quantitative insights into these 21st Century challenges
  - Energy models have very different methodologies, and are targeted at different research questions
  - Energy models are built, run, critiqued and applied by people
- Let's open the black box of energy modelling
  - Energy modelling insights and policy making iteration



## What are energy models?

- What models are *not* 
  - A generator of research papers or consultancy funding
  - A name based on a zippy acronym
    - e.g., GREEN, BLUE; PRISM, CUBE; ALPHA, GAMMA, DELTA; ALBATROSS
- UCL-Energy's approach to modelling
  - There will never be a universal model which will answer all questions
  - A range of models (& model linkages) are required for any given problem
  - Developing an expert/educated community of developers and users is critical
  - Models are only as good as the data you have to populate / challenge them



## What is a mathematical energy model?

- A simplified imitation of the real thing
- A series of equations that together (try to) represent characteristics of a real-world system
- Based on observed and/or inferred data and insights
  - But may also rely heavily on scenario specific assumptions (especially for very long time horizons and complex systems

Uses of a model:

• A framework for analysing the modelled system

A model is not:

• A crystal ball that predicts the future



#### ...And an energy system model?

- Models used for system level analysis
  - Usually all main sectors included (in some form)
  - Spatial, temporal and economic interactions also considered
- Focus varies between models
  - Technology, (macro)economics, integrated assessment
  - Local, global and everything in between
  - Temporally usually from some decades to hundreds of years
- Decision environments differ
  - Social planner vs heterogeneous agents
- Common characteristic: Describe interactions and interdependencies of the components of a highly complex system



## Model characterization based on...

- Economic coverage
  - Partial vs. General equilibrium
  - Top down vs. bottom up
- Environmental coverage
  - Emission coverage
  - Integrated assessment vs energy system
- Geographical coverage
  - World, country, region, city...
- Time horizon

٠

wholeSEN

- Static, short, medium, long term to very long term (100-200 years)
- Purpose of the model
  - Forecasting, scenario analysis, stylized dynamics
- Foresight and uncertainty
  - Deterministic, myopic, stochastic
  - What is uncertain, how is uncertainty resolved, how does it affect results?
  - Solution algorithm/approach
    - All of these have implications for interpreting the results

# **UC**

#### Computable General Equlibrium models

- General equilibrium (static or dynamic)
- e.g. EPPA, MERGE
- Focus on the economy, little detail on technology
- Consists of:
  - Tables of transaction values
  - Production function (labour, capital, materials, energy, other)
  - Elasticities for capturing behavioural responses (e.g., price, demand, trade, income elasticities etc)
- Solve model with a set of exogenous parameters (representing technology, wages, prices, and exchange rates) to bring all markets into equilibrium

#### Simulation models

- Partial Equilibrium (usually)
- e.g. POLES, TIMER, GCAM
  - Simulate a 'system' by representing the relationships between key parts of it
- Is not prescriptive, but descriptive
  - Tries to capture observed dynamics (optimisation vs. simulation)
  - Based on, e.g. use of multinomial logit functions or econometric relationships
- Can include relatively much detail on technology

#### **Optimisation models**

- Optimise an objective subject to constraints
- e.g., MARKAL, TIAM-UCL, MESSAGE
- Usually minimisation (over given time period) of costs for the energy system
- Partial equilibrium

٠

- Prescriptive, usually "a social planner with perfect foresight" (additional constraints often used for descriptive purposes)
- Starting point the representation of a system. Then add:
  - an objective function e.g. sum of simulated costs, to be minimised
  - specified constraints e.g. power supply must equal or exceed demand
  - Some mathematical technique to seek the optimum (e.g. linear programming)

9

# **L**

## Model Usefulness: Quote #1

- "All models are wrong but some are useful"
   George Box
- My alternate version
  - "Some models are right, (or at least in practice, right enough), and even the wrong ones can still be useful"



## Model Complexity: Quote #2

- "entia non sunt multiplicanda praeter necessitatem"
  - "entities must not be multiplied beyond necessity"
  - William of Ockham: 1288 1348
- In modelling terms:
  - Simplicity-elegance-parsimony
  - Complexity as necessary
    - **BUT** energy-economic system is inherently complex
  - Problem drives modelling and analysis



# Model Quantification: Quote #3

- "Model for insights, not numbers"
  - Hill Huntington, 1982
- But decision makers don't really want insights!
  - They really want numbers
  - And they don't deal with uncertainty very well



#### Building and using a model, what matters?

#### Some critical modelling issues

- Technology
  - Development drivers and trends, learning, surprises
- Behaviour
  - Heterogeneous a individuals) vs. a emergence (ager modelling?)
- Scale
  - Spatial: Local vs. national vs. global (policies, technologies, infrastructures)
  - Temporal: Months, years decade centuries. Surprises and responses to signals

Interpreting the model results

- What do the results mean?
  - Long term, global, perfect foresight, deterministic, social planner ≠ short term, local, stochastic\_agent based

**Uncertainty!** 

n highly model (and ecific, requires careful n!

- What can they be used for?
  - Can be very useful for, for example, policy advice, but need to be communicated properly (what is covered, what is assumed)
  - Generally: Not forecasts, but insights on the system (dynamics)!

# UKTM – The UK TIMES Model

#### Overview

- Integrated energy systems model
- Least cost optimization
- Partial equilibrium
- Technology rich
- Successor to UK MARKAL
- Used by UCL and DECC







## **UKTM** – UK TIMES energy system model







wholeSE

# 

### Energy systems modelling for UK policy

| 2000                                   | 2003     | 2005                            | 2007                              | 2008                                                      | 2009               | 2010-                                                | 2012-14        | 2015                                               |
|----------------------------------------|----------|---------------------------------|-----------------------------------|-----------------------------------------------------------|--------------------|------------------------------------------------------|----------------|----------------------------------------------------|
| RCEP<br>-60% CO <sub>2</sub><br>target | EWP 03   | Energy<br>Review                | EWP 07                            | CCC report<br>-80% GHG<br>legislation                     | LCTP               | CCC<br>Budgets<br>1-4                                | Carbon<br>plan | Carbon<br>budget 5                                 |
| Model                                  | MARKAL   |                                 | M-Macro                           |                                                           | M-ED               | M-Sto                                                | chastic        | UKTM                                               |
| type                                   |          |                                 |                                   |                                                           |                    | TIAM-U                                               | CL, ETM-U      | CL, Scottish TIMES                                 |
|                                        |          |                                 |                                   |                                                           |                    |                                                      |                |                                                    |
| Funding                                |          |                                 |                                   | UKERC                                                     |                    |                                                      |                | wholeSEM                                           |
| runung                                 |          |                                 | RCUK, DECC, CCC, Ofgem, NGOs, FP7 |                                                           |                    |                                                      |                | P7                                                 |
|                                        |          |                                 | -                                 |                                                           |                    |                                                      |                |                                                    |
|                                        | structur | i simple<br>red model<br>opment | program<br>UK mod                 | 2 year UKERC<br>me; enhanced<br>el with Macro<br>ttension | develo<br>major Co | emand mode<br>opment with<br>CC and UKER<br>cenarios | TIN            | astic model, Global<br>IES model, UKTM<br>variants |

## UK Energy Policy Timeline (1)

| Year | Energy Policy Landmark                                                    | Modelling study   |  |  |
|------|---------------------------------------------------------------------------|-------------------|--|--|
| 1992 | Dept. of Energy disbanded                                                 | Updated Emissions |  |  |
|      | OFGEM as independent regulator; Energy Efficiency Office created          | Projections (UEP) |  |  |
| 1993 |                                                                           |                   |  |  |
| 1994 |                                                                           |                   |  |  |
| 1995 | UNFCCC negotiations; Nuclear review                                       | UEP               |  |  |
| 1996 |                                                                           |                   |  |  |
| 1997 | Kyoto Protocol                                                            |                   |  |  |
| 1998 |                                                                           |                   |  |  |
| 1999 |                                                                           |                   |  |  |
| 2000 | UNFCCC 3 <sup>rd</sup> National Communication                             | UEP               |  |  |
|      | Renewable electricity obligation (RO), Climate change levy (CCL)          |                   |  |  |
| 2001 | Royal Commission on Environmental Pollution (-60% CO <sub>2</sub> target) |                   |  |  |
| 2002 |                                                                           |                   |  |  |
| 2003 | Energy White Paper                                                        | MARKAL            |  |  |
| 2004 | UK emissions trading scheme; EUETS National allocation plan Phase I;      | UEP               |  |  |
| 7    | Climate change agreements (CCA); Carbon Trust                             | 18                |  |  |

# UK Energy Policy Timeline (2)

| Year  | Energy Policy Landmark                                                                                             | Modelling study           |
|-------|--------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2005  | UKERC commissioned                                                                                                 |                           |
| 2006  | Energy Review, EUETS National allocation plan - phase II, Warm front;                                              | UEP; PAGE                 |
|       | Renewable transport fuel obligation (RTFO). Plus Stern Review                                                      |                           |
| 2007  | Energy White Paper                                                                                                 | UEP; MARKAL-Macro         |
| 2008  | Climate Change Act (-80% GHG target)                                                                               | UEP; MARKAL-Macro, MDM-   |
|       | DECC founded. (CCC) formed and inaugural report                                                                    | E3                        |
| 2009  | Scottish Climate Change Act                                                                                        | UEP; MARKAL spatial, AMOS |
|       | Low Carbon Transition Plan for 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> carbon budget periods (2008-12, |                           |
|       | 2013-17 and 2018-22)                                                                                               |                           |
| 2010  | 4 <sup>th</sup> carbon budget (2022-27)                                                                            | UEP; MARKAL Stochastic,   |
|       |                                                                                                                    | DECC Calculator, Zephr    |
| 2011  | Carbon Plan                                                                                                        | UEP, Global TIAM-UCL      |
|       | Green Deal; Green Investment Bank                                                                                  | MARKAL elastic demand     |
| 2012  | Electricity Market Reform (CO <sub>2</sub> floor price, emissions standard, feed in tariff)                        | UEP, DSIM, AMOS, MRIO     |
|       | Review of carbon budgets and competitiveness                                                                       |                           |
| 2013- | 4 <sup>th</sup> carbon budget review (2022-27)                                                                     | UEP, TIAM-UCL, ESME       |
|       | Review of carbon budgets and energy prices                                                                         |                           |
| 2015  | 5 <sup>th</sup> carbon budget                                                                                      | UKTM, range of models     |
|       |                                                                                                                    | 10                        |





# UK GHG budgets

| 5 year Carbon<br>budget | Years     | Budget<br>(MtCO2e) | % reduction vs<br>1990 levels | Status                                                   |
|-------------------------|-----------|--------------------|-------------------------------|----------------------------------------------------------|
| 1 <sup>st</sup>         | 2008-2012 | 3,018              | 23%                           | Achieved                                                 |
| 2 <sup>nd</sup>         | 2013-2017 | 2,782              | 29%                           | On target                                                |
| 3 <sup>rd</sup>         | 2018-2022 | 2,544              | 35%                           | Legislated                                               |
| 4 <sup>th</sup>         | 2023-2027 | 1,950              | 50%                           | Legislated                                               |
| 5 <sup>th</sup>         | 2028-2032 | 1,765              | 57%                           | Proposed by<br>CCC in Dec 2015<br>(DECC response<br>due) |

## The low-carbon transition in the UK

80% GHG emission reduction until 2050



#### **Electricity generation...**





#### ...and final energy consumption



- Coal
  Nat. Gas
  Oil
  Biomass CCS
  Wind
  Nuclear
  Imports
- Coal CCS
  Nat.Gas CCS
  Biomass
  CHP
  Other RE
  Hydrogen
  Electricity

# Emission reduction and carbon prices



## The impact of technology uncertainty

The reference case shows a consistent, least-cost pathway to achieve the UK's lowcarbon energy transition, but ...



#### Scenario comparison



Carbon price





#### **Costs in perspective** [All in 2010 £]



| Expenditure                    | 2010 cost<br>(B£/yr) | 2050 cost<br>(B£/yr) | per 2010<br>UK capita<br>(£/yr) | per 2050<br>UK capita<br>(£/yr) |
|--------------------------------|----------------------|----------------------|---------------------------------|---------------------------------|
| UK GDP                         | 1,400                | 3,100*               | 23,400                          | 47,700                          |
| -80% GHG costs                 |                      | 63 – 187#            |                                 | 970 - 2900                      |
| Final energy consumption       | 75                   | 166*                 | 1,250                           | 2,550                           |
| UK Bank bailout                | 500                  |                      | 8,300                           |                                 |
| Health budget                  | 124                  | 270*                 | 2,060                           | 4,200                           |
| Education budget (to 18 years) | 58                   | 130*                 | 970                             | 2,000                           |
| BP, Shell, Exxon profits       | 6 - 25               |                      |                                 |                                 |
| Nuclear decommissioning        | 46                   |                      | 760                             |                                 |
| New nuclear weapons            | 16                   |                      | 260                             |                                 |
| Public renewable energy R&D    | 0.15                 |                      | 2.5                             |                                 |





# Thank you for your attention!

- Whole Systems Energy Modelling Consortium: <u>www.wholeSEM.ac.uk</u>
- UCL-Energy Models: <u>www.ucl.ac.uk/energy-</u> models

